from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.metrics import f1_score if __name__ == '__main__': print('Hello') dataset = np.loadtxt('data.csv', delimiter=',') np.random.shuffle(dataset) X = dataset[:,0:8] y = dataset[:,8] X_train = X[0:650] y_train = y[0:650] X_test = X[651:] y_test = y[651:] model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, epochs=15, batch_size=10) _, accuracy = model.evaluate(X_test, y_test) print('Accuracy: %.2f' % (accuracy*100)) predictions = (model.predict(X_test) > 0.5).astype(int) fscore = f1_score(y_test, predictions, average='macro') print('fscore: ', fscore)