okapi/main.py

118 lines
3.8 KiB
Python
Raw Normal View History

2022-04-10 18:18:05 +02:00
# Amazon revievs search engine
2022-04-12 22:46:50 +02:00
from typing import List
import string
2022-04-10 18:18:05 +02:00
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from vectorizer_idf import VectorizerIdf
from vectorizer_tf import VectorizerTf
2022-04-12 22:46:50 +02:00
import spacy
import re
2022-04-10 18:18:05 +02:00
2022-04-12 22:46:50 +02:00
nlp = spacy.load("en_core_web_sm")
2022-04-10 18:18:05 +02:00
def get_answers_array():
2022-04-11 10:09:45 +02:00
d = pd.read_csv('data.csv', engine='python', error_bad_lines=False)
answers = d["ad"]
2022-04-10 18:18:05 +02:00
answers = answers.dropna()
return np.array(answers)
2022-04-12 22:46:50 +02:00
def has_numbers(inputString):
return any(char.isdigit() for char in inputString)
2022-04-10 18:18:05 +02:00
2022-04-12 22:46:50 +02:00
def okapi_mb25(query, tf, idf, a_len, documents, d_idf):
2022-04-10 18:18:05 +02:00
k = 1.6
b = 0.75
scores = []
2022-04-12 22:46:50 +02:00
q_tf = tf.get_tf_for_document(query)
docs_v = tf.tf_matrix.toarray()
2022-04-11 10:09:45 +02:00
for index, document in enumerate(documents):
2022-04-10 18:18:05 +02:00
s = 0
2022-04-12 22:46:50 +02:00
for re_p in re.findall('[0-9a-z.,-/]+', document):
for q_ in query.split():
if re_p == q_:
s +=100
for word in document.split():
val_tf = 0
for d in query.split():
if d == word:
val_tf += 1
if not d_idf.get(word):
continue
idf_for_word = d_idf[word]
licznik = val_tf * (k + 1)
mianownik = val_tf + k * (1 - b + b * (len(document.split()) / a_len))
s += idf_for_word * (licznik / mianownik)
scores.append(s)
2022-04-10 18:18:05 +02:00
return scores
2022-04-12 22:46:50 +02:00
# try:
# # v_tf = VectorizerTf([document])
# # tf_for_doc = v_tf.get_tf_for_document(query)
# # tf_for_document = v_tf.tf_matrix.toarray() * tf_for_doc[0]
# doc_v = docs_v[index]
# a=1
# for idx, val in enumerate(doc_v):
# pass
# # idf_for_word = idf.matrix.toarray()[index][idx]
# # licznik = val * (k + 1)
# # mianownik = val + k * (1 - b + b * (len(document.split()) / a_len))
# # s += idf_for_word * (licznik / mianownik)
# # a=1
# # scores.append(s)
# except Exception as e:
# scores.append(0)
# print('error', e)
# return scores
2022-04-10 18:18:05 +02:00
2022-04-12 22:46:50 +02:00
def preprocess(d_list: List):
result = []
for d in d_list:
words = []
d = d.translate(str.maketrans('', '', string.punctuation))
for token in nlp(d):
words.append(token.lemma_)
result.append(" ".join(words))
return result
2022-04-10 18:18:05 +02:00
if __name__ == "__main__":
2022-04-12 22:46:50 +02:00
data = get_answers_array()
# data = ['Ala has a cat', 'Maciej and Ala have dog and Ala Ala Ala', 'Ala has a turtle', 'Maciej has a dog, turtle and a lot of cats',
# 'Ola has a dog, turtle and cat, butters']
data = [d.lower() for d in data]
data = np.array(data)
# data = preprocess(data)
2022-04-10 18:18:05 +02:00
average_lens = []
for doc in data:
words = doc.split()
2022-04-12 22:46:50 +02:00
if words:
average_lens.append(sum(len(word) for word in words) / len(words))
2022-04-10 18:18:05 +02:00
average_doc_len = sum(average_lens) / len(average_lens)
2022-04-11 10:09:45 +02:00
2022-04-10 18:18:05 +02:00
vectorizer_tf = VectorizerTf(data)
vectorizer_idf = VectorizerIdf(data)
2022-04-12 22:46:50 +02:00
vocab = vectorizer_tf.feature_names
data_idf = {}
for idx, v in enumerate(vocab):
data_idf[v] = vectorizer_idf.get_idf_for_word(v)
2022-04-11 10:09:45 +02:00
while True:
q = input('Wpisz fraze: ')
2022-04-12 22:46:50 +02:00
q = q.lower()
# q = preprocess([q])[0]
score = okapi_mb25(q, vectorizer_tf, vectorizer_idf, average_doc_len, data, data_idf)
print('loading ended')
2022-04-11 10:09:45 +02:00
list1, list2 = zip(*sorted(zip(score, data)))
i = 0
for sc, sent in zip(reversed(list1), reversed(list2)):
if sc:
print(sent, sc)
i += 1
if i == 5:
break
X = [i for i in score if i != 0]
print('Znaleziono ' + str(len(X)) + ' wyniki')