This commit is contained in:
Mikołaj Pokrywka 2022-05-24 23:39:33 +02:00
parent ecfafbf86c
commit 29edb4ccf2
3 changed files with 10596 additions and 0 deletions

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

172
run.py Normal file
View File

@ -0,0 +1,172 @@
import lzma
import gensim.downloader
import numpy as np
import torch
FEAUTERES = 100
def predict(data):
nn_model.eval()
predictions = []
for i in range(len(data)):
X = data[i]
X = torch.tensor(X.astype(np.float32))
Y_predictions = nn_model(X)
if Y_predictions[0] > 0.5:
predictions.append("1")
else:
predictions.append("0")
return predictions
def vectorize(data):
vectorized_data = np.array([np.array([word2vec_model.wv[i] for i in ls if i in words]) for ls in data])
avarage_vector = []
for vector in vectorized_data:
if vector.size:
avarage_vector.append(vector.mean(axis=0))
else:
avarage_vector.append(np.zeros(100, dtype=float))
return avarage_vector
def generate_out(folder_path):
print('Generating out')
X_dev = []
with lzma.open(f"{folder_path}/in.tsv.xz", 'r') as file:
for line in file:
line = line.strip()
line = line.decode("utf-8")
tabs = line.rsplit('\t')
content = tabs[0]
pre_processed = gensim.utils.simple_preprocess(content)
X_dev.append(pre_processed)
print("step 5")
X_dev = vectorize(X_dev)
prediction = predict(X_dev)
print("step 6")
f = open(f"{folder_path}/out.tsv", "a")
for p in prediction:
f.write(str(p) + '\n')
f.close()
def get_loss_acc(model, X_dataset, Y_dataset):
loss_score = 0
acc_score = 0
items_total = 0
model.eval()
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
X = X_dataset[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32))
Y = Y_dataset[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
loss = criterion(Y_predictions, Y)
loss_score += loss.item() * Y.shape[0]
return (loss_score / items_total), (acc_score / items_total)
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEAUTERES,500)
self.fc2 = torch.nn.Linear(500,1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
if __name__ == "__main__":
X = []
Y = []
with lzma.open('train/in.tsv.xz', 'r') as file:
for line in file:
line = line.strip()
line = line.decode("utf-8")
tabs = line.rsplit('\t')
content = tabs[0]
pre_processed = gensim.utils.simple_preprocess(content)
X.append(pre_processed)
print("step 1")
with open('train/expected.tsv', 'r') as file:
for line in file:
line = line.strip()
Y.append(int(line))
X_train = X
Y_train = Y
print("step 2")
print('Word to vec start')
word2vec_model = gensim.models.Word2Vec(X_train, vector_size=100, window=5, min_count=2)
print('Created model')
words = set(word2vec_model.wv.index_to_key)
print('Created set of worlds')
X_train = vectorize(X_train)
X_train = np.array(X_train)
Y_train = np.array(Y_train)
print('Vectorized data')
print('Word to vec ended')
print("step 3")
# model = LogisticRegression()
# model.fit(X_vectorized, Y)
nn_model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
for epoch in range(7):
loss_score = 0
acc_score = 0
items_total = 0
nn_model.train()
for i in range(0, Y_train.shape[0], BATCH_SIZE):
X = X_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32))
Y = Y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = nn_model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
print('Printing')
print(epoch)
print(get_loss_acc(nn_model, X_train, Y_train))
# display(get_loss_acc(nn_model, X_dev, Y_dev))
print("step 4")
generate_out('dev-0')
# generate_out('dev-1')
generate_out('test-A')

5152
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff