projekt_widzenie/process_video.py

69 lines
1.9 KiB
Python
Raw Normal View History

2023-01-29 17:44:33 +01:00
import cv2
import tensorflow as tf
import numpy as np
2023-01-30 16:28:34 +01:00
from crop_hand_skeleton import crop_hand
2023-01-30 16:08:54 +01:00
from cvzone.HandTrackingModule import HandDetector
2023-01-29 17:44:33 +01:00
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
def segment_video(video, fps=5):
real_fps = video.get(cv2.CAP_PROP_FPS)
print(f"{real_fps=}")
if real_fps < fps:
raise Exception("Video FPS cannot be bigger than desired FPS!")
2023-01-31 16:58:27 +01:00
n = int(real_fps / fps)
2023-01-29 17:44:33 +01:00
result = []
2023-01-31 17:06:47 +01:00
frames_nums = []
2023-01-29 17:44:33 +01:00
i=0
2023-01-29 17:48:12 +01:00
num = 0
2023-01-29 17:44:33 +01:00
while True:
ret, frame = video.read()
if ret == False:
break
if i % n == 0:
result.append(frame)
2023-01-31 17:06:47 +01:00
frames_nums.append(i)
2023-01-29 17:48:12 +01:00
num += 1
2023-01-29 17:44:33 +01:00
i += 1
2023-01-31 17:06:47 +01:00
return result, num, frames_nums
2023-01-29 17:44:33 +01:00
def save_frames(frames, dir):
2023-01-30 16:08:54 +01:00
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
2023-01-29 17:44:33 +01:00
for i, frame in enumerate(frames):
print(i)
2023-01-30 16:28:34 +01:00
cv2.imwrite(f"{dir}/frame{i}.jpg", crop_hand(frame, detector))
2023-01-29 17:44:33 +01:00
def classify(img, model):
#img = cv2.resize(img, (224, 224))
img = tf.keras.utils.img_to_array(img)
img = np.expand_dims(img, axis = 0)
return class_names[np.argmax(model.predict(img))]
def read_saved_frames(dir, n):
result = []
2023-01-29 17:48:12 +01:00
for i in range(n):
2023-01-29 17:44:33 +01:00
img = tf.keras.utils.load_img(f"{dir}/frame{i}.jpg", target_size = [224, 224])
result.append(img)
return result
if __name__ == "__main__":
2023-01-31 16:58:27 +01:00
video = cv2.VideoCapture("mp.mp4")
model = tf.keras.models.load_model('model_pred/effnet_sign_char_detection_model')
2023-01-29 17:44:33 +01:00
2023-01-31 16:58:27 +01:00
frames, num = segment_video(video, 30)
2023-01-29 17:48:12 +01:00
print(num)
2023-01-29 17:44:33 +01:00
save_frames(frames, "frames")
frames = read_saved_frames("frames", num)
result = []
for frame in frames:
result.append(classify(frame, model))
print(result)