2023-01-29 17:44:33 +01:00
|
|
|
import cv2
|
|
|
|
import tensorflow as tf
|
|
|
|
import numpy as np
|
2023-01-30 16:28:34 +01:00
|
|
|
from crop_hand_skeleton import crop_hand
|
2023-01-30 16:08:54 +01:00
|
|
|
from cvzone.HandTrackingModule import HandDetector
|
2023-01-29 17:44:33 +01:00
|
|
|
|
|
|
|
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def segment_video(video, fps=5):
|
|
|
|
real_fps = video.get(cv2.CAP_PROP_FPS)
|
|
|
|
print(f"{real_fps=}")
|
|
|
|
if real_fps < fps:
|
|
|
|
raise Exception("Video FPS cannot be bigger than desired FPS!")
|
|
|
|
|
2023-01-31 16:58:27 +01:00
|
|
|
n = int(real_fps / fps)
|
2023-01-29 17:44:33 +01:00
|
|
|
|
|
|
|
result = []
|
2023-01-31 17:06:47 +01:00
|
|
|
frames_nums = []
|
2023-01-29 17:44:33 +01:00
|
|
|
i=0
|
2023-01-29 17:48:12 +01:00
|
|
|
num = 0
|
2023-01-29 17:44:33 +01:00
|
|
|
while True:
|
|
|
|
ret, frame = video.read()
|
|
|
|
if ret == False:
|
|
|
|
break
|
|
|
|
if i % n == 0:
|
|
|
|
result.append(frame)
|
2023-01-31 17:06:47 +01:00
|
|
|
frames_nums.append(i)
|
2023-01-29 17:48:12 +01:00
|
|
|
num += 1
|
2023-01-29 17:44:33 +01:00
|
|
|
i += 1
|
|
|
|
|
2023-01-31 17:06:47 +01:00
|
|
|
return result, num, frames_nums
|
2023-01-29 17:44:33 +01:00
|
|
|
|
|
|
|
def save_frames(frames, dir):
|
2023-01-30 16:08:54 +01:00
|
|
|
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
|
2023-01-29 17:44:33 +01:00
|
|
|
for i, frame in enumerate(frames):
|
|
|
|
print(i)
|
2023-01-30 16:28:34 +01:00
|
|
|
cv2.imwrite(f"{dir}/frame{i}.jpg", crop_hand(frame, detector))
|
2023-01-29 17:44:33 +01:00
|
|
|
|
|
|
|
|
|
|
|
def classify(img, model):
|
|
|
|
#img = cv2.resize(img, (224, 224))
|
|
|
|
img = tf.keras.utils.img_to_array(img)
|
|
|
|
img = np.expand_dims(img, axis = 0)
|
|
|
|
return class_names[np.argmax(model.predict(img))]
|
|
|
|
|
|
|
|
|
|
|
|
def read_saved_frames(dir, n):
|
|
|
|
result = []
|
2023-01-29 17:48:12 +01:00
|
|
|
for i in range(n):
|
2023-01-29 17:44:33 +01:00
|
|
|
img = tf.keras.utils.load_img(f"{dir}/frame{i}.jpg", target_size = [224, 224])
|
|
|
|
result.append(img)
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-01-31 16:58:27 +01:00
|
|
|
video = cv2.VideoCapture("mp.mp4")
|
|
|
|
model = tf.keras.models.load_model('model_pred/effnet_sign_char_detection_model')
|
2023-01-29 17:44:33 +01:00
|
|
|
|
2023-01-31 16:58:27 +01:00
|
|
|
frames, num = segment_video(video, 30)
|
2023-01-29 17:48:12 +01:00
|
|
|
print(num)
|
2023-01-29 17:44:33 +01:00
|
|
|
save_frames(frames, "frames")
|
|
|
|
frames = read_saved_frames("frames", num)
|
|
|
|
result = []
|
|
|
|
for frame in frames:
|
|
|
|
result.append(classify(frame, model))
|
|
|
|
print(result)
|