23 lines
694 B
Python
23 lines
694 B
Python
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
|
||
|
model = keras.models.load_model('sign_car_detection_model')
|
||
|
|
||
|
|
||
|
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
|
||
|
|
||
|
|
||
|
def pred_sign_char(path_to_img: str):
|
||
|
|
||
|
pred = []
|
||
|
test_image = tf.keras.utils.load_img(path_to_img, target_size = (256, 256))
|
||
|
test_image = tf.keras.utils.img_to_array(test_image)
|
||
|
test_image = np.expand_dims(test_image, axis = 0)
|
||
|
result = model.predict(test_image)
|
||
|
|
||
|
|
||
|
print(result)
|
||
|
pred.append(class_names[np.argmax(result)])
|
||
|
print(pred)
|
||
|
return pred[0]
|