Compare commits
No commits in common. "master" and "dataset_andrzej" have entirely different histories.
master
...
dataset_an
89
README.md
@ -1,16 +1,9 @@
|
|||||||
# projekt_widzenie
|
# projekt_widzenie
|
||||||
|
|
||||||
## Autorzy
|
|
||||||
|
|
||||||
Mikołaj Pokrywka,
|
|
||||||
Kamil Guttmann,
|
|
||||||
Andrzej Preibisz
|
|
||||||
|
|
||||||
## Run apllication
|
## Run apllication
|
||||||
1. `pip install -r requirements.txt`
|
1. `pip install -r requirements.txt`
|
||||||
2. `sudo apt-get install ffmpeg`
|
2. `streamlit run main.py`
|
||||||
3. `streamlit run main.py`
|
3. On http://localhost:8501/ you should see the app
|
||||||
4. On http://localhost:8501/ you should see the app
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -18,84 +11,8 @@ Andrzej Preibisz
|
|||||||
|
|
||||||
Mamy łącznie 197784 zdjęć
|
Mamy łącznie 197784 zdjęć
|
||||||
|
|
||||||
+ swój własno zrobiony zbiór testowy 148 zdjęć
|
|
||||||
|
|
||||||
Linki do datasetów:
|
Linki do datasetów:
|
||||||
1. https://www.kaggle.com/datasets/mrgeislinger/asl-rgb-depth-fingerspelling-spelling-it-out
|
1. https://www.kaggle.com/datasets/mrgeislinger/asl-rgb-depth-fingerspelling-spelling-it-out
|
||||||
2. https://www.kaggle.com/datasets/grassknoted/asl-alphabet
|
2. https://www.kaggle.com/datasets/grassknoted/asl-alphabet
|
||||||
3. https://www.kaggle.com/datasets/lexset/synthetic-asl-alphabet
|
3. https://www.kaggle.com/datasets/lexset/synthetic-asl-alphabet
|
||||||
4. https://www.kaggle.com/datasets/kuzivakwashe/significant-asl-sign-language-alphabet-dataset
|
4. https://www.kaggle.com/datasets/kuzivakwashe/significant-asl-sign-language-alphabet-dataset
|
||||||
|
|
||||||
|
|
||||||
## Trening modelu
|
|
||||||
|
|
||||||
Do trenowania używano biblioteki Keras
|
|
||||||
|
|
||||||
### Pierwsze podejście model trenowany od zera (from scratch)
|
|
||||||
|
|
||||||
|
|
||||||
```
|
|
||||||
img_height=256
|
|
||||||
img_width=256
|
|
||||||
batch_size=128
|
|
||||||
epochs=30
|
|
||||||
```
|
|
||||||
|
|
||||||
```
|
|
||||||
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
|
|
||||||
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
|
||||||
layers.MaxPooling2D(),
|
|
||||||
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
|
||||||
layers.MaxPooling2D(),
|
|
||||||
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
|
||||||
layers.MaxPooling2D(),
|
|
||||||
layers.Flatten(),
|
|
||||||
layers.Dense(128, activation='relu'),
|
|
||||||
layers.Dense(29,activation='softmax')
|
|
||||||
```
|
|
||||||
|
|
||||||
Zbiór testowy własny: 22% Accuracy
|
|
||||||
|
|
||||||
Zbiór testowy mieszany z Kaggle: 80% Accuracy
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## Drugie podejście model VGG16
|
|
||||||
|
|
||||||
Zastosowano early stopping z val_loss
|
|
||||||
```
|
|
||||||
img_height=224
|
|
||||||
img_width=224
|
|
||||||
batch_size=128
|
|
||||||
epochs=50
|
|
||||||
```
|
|
||||||
|
|
||||||
Usunięto 3 wierzchne wartswy i dodano warstwy:
|
|
||||||
```
|
|
||||||
x = layers.Flatten()(vgg_model.output)
|
|
||||||
x = layers.Dense(len(class_names), activation='softmax')(x)
|
|
||||||
```
|
|
||||||
|
|
||||||
Zbiór testowy własny: 52% Accuracy
|
|
||||||
|
|
||||||
Zbiór testowy mieszany z Kaggle: 79% Accuracy
|
|
||||||
|
|
||||||
## Trzecie podejście model VGG16 z detekcją dłoni
|
|
||||||
|
|
||||||
Model jak powyżej tylko datasety zostały przereobione modelem do detekcji dłoni i wycięciem odpowiedniego fragmentu ze zdjęcia
|
|
||||||
|
|
||||||
Zbiór testowy własny: 61% Accuracy
|
|
||||||
|
|
||||||
|
|
||||||
## Czwarte podejście model VGG16 z detekcją dłoni i zaznaczeniem szkieletu
|
|
||||||
|
|
||||||
Model jak powyżej tylko datasety zostały przereobione modelem do detekcji dłoni, wycięciem odpowiedniego fragmentu ze zdjęcia, a także zaznaczenie "szkieletu" dłoni
|
|
||||||
|
|
||||||
Zbiór testowy własny: 70% Accuracy
|
|
||||||
|
|
||||||
|
|
||||||
## Piąte podejście model VGG19 z detekcją dłoni i zaznaczeniem szkieletu
|
|
||||||
|
|
||||||
Model jak powyżej tylko datasety zostały przereobione modelem do detekcji dłoni, wycięciem odpowiedniego fragmentu ze zdjęcia, a także zaznaczenie "szkieletu" dłoni
|
|
||||||
|
|
||||||
Zbiór testowy własny: 67% Accuracy
|
|
39
crop_hand.py
@ -1,39 +0,0 @@
|
|||||||
import os
|
|
||||||
from cvzone.HandTrackingModule import HandDetector
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
|
|
||||||
def crop_hand(img, detector, offset=50):
|
|
||||||
hands, det_img = detector.findHands(img.copy())
|
|
||||||
offset = int((img.shape[0] + img.shape[1]) * 0.1)
|
|
||||||
if hands:
|
|
||||||
hand = hands[0]
|
|
||||||
x, y, w, h = hand['bbox']
|
|
||||||
img_crop = img[max(0, y - offset):min(y + h + offset, img.shape[0]), max(0, x - offset):min(x + w + offset, img.shape[1])]
|
|
||||||
return img_crop
|
|
||||||
return img
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
input_path = "test_data"
|
|
||||||
output_path = "test_data_cropped"
|
|
||||||
dir_list = os.listdir(input_path)
|
|
||||||
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
|
|
||||||
|
|
||||||
for sign in dir_list:
|
|
||||||
if not os.path.exists(output_path + '/' + sign):
|
|
||||||
os.mkdir(output_path + '/' + sign)
|
|
||||||
for img_name in os.listdir(input_path + '/' + sign):
|
|
||||||
file_path = input_path + '/' + sign + '/' + img_name
|
|
||||||
output_file_path = output_path + '/' + sign + '/cropped_' + img_name
|
|
||||||
|
|
||||||
img = cv2.imread(file_path)
|
|
||||||
img_crop = crop_hand(img, detector)
|
|
||||||
try:
|
|
||||||
cv2.imwrite(output_file_path, img_crop)
|
|
||||||
except:
|
|
||||||
cv2.imwrite(output_file_path, img)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
@ -1,39 +0,0 @@
|
|||||||
import os
|
|
||||||
from cvzone.HandTrackingModule import HandDetector
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
|
|
||||||
def crop_hand(img, detector, offset=50):
|
|
||||||
hands, det_img = detector.findHands(img.copy())
|
|
||||||
offset = int((img.shape[0] + img.shape[1]) * 0.1)
|
|
||||||
if hands:
|
|
||||||
hand = hands[0]
|
|
||||||
x, y, w, h = hand['bbox']
|
|
||||||
img_crop = det_img[max(0, y - offset):min(y + h + offset, img.shape[0]), max(0, x - offset):min(x + w + offset, img.shape[1])]
|
|
||||||
return img_crop
|
|
||||||
return img
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
input_path = "test_data"
|
|
||||||
output_path = "test_data_cropped"
|
|
||||||
dir_list = os.listdir(input_path)
|
|
||||||
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
|
|
||||||
|
|
||||||
for sign in dir_list:
|
|
||||||
if not os.path.exists(output_path + '/' + sign):
|
|
||||||
os.mkdir(output_path + '/' + sign)
|
|
||||||
for img_name in os.listdir(input_path + '/' + sign):
|
|
||||||
file_path = input_path + '/' + sign + '/' + img_name
|
|
||||||
output_file_path = output_path + '/' + sign + '/cropped_' + img_name
|
|
||||||
|
|
||||||
img = cv2.imread(file_path)
|
|
||||||
img_crop = crop_hand(img, detector)
|
|
||||||
try:
|
|
||||||
cv2.imwrite(output_file_path, img_crop)
|
|
||||||
except:
|
|
||||||
cv2.imwrite(output_file_path, img)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
18
frames/a.py
@ -1,18 +0,0 @@
|
|||||||
import cv2 as cv
|
|
||||||
|
|
||||||
|
|
||||||
letters =['L', 'L', 'L', 'L', 'L', 'L', 'L', 'T', 'C', 'C', 'C', 'C', 'O', 'D', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'D', 'D', 'A', 'A', 'C', 'C', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L']
|
|
||||||
|
|
||||||
for i, l in enumerate(letters):
|
|
||||||
|
|
||||||
|
|
||||||
image = cv.imread(f"frame{i}.jpg", cv.IMREAD_COLOR)
|
|
||||||
|
|
||||||
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
|
||||||
|
|
||||||
cv.putText(image, l, (10, 100), cv.FONT_HERSHEY_SIMPLEX , 1, (255,0,0), 5)
|
|
||||||
|
|
||||||
image =cv.resize(image, [300, 300])
|
|
||||||
|
|
||||||
image = cv.cvtColor(image, cv.COLOR_RGB2BGR)
|
|
||||||
cv.imwrite(f'post/{i}.jpg', image)
|
|
@ -1,16 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
import glob
|
|
||||||
|
|
||||||
frameSize = (300, 300)
|
|
||||||
|
|
||||||
out = cv2.VideoWriter('2__output_video.avi',cv2.VideoWriter_fourcc(*'DIVX'), 30, frameSize)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for i in range(79):
|
|
||||||
img = cv2.imread(f"{i}.jpg")
|
|
||||||
print(f"{i}.jpg")
|
|
||||||
out.write(img)
|
|
||||||
|
|
||||||
out.release()
|
|
BIN
kamil_asl.mp4
96
main.py
@ -1,95 +1,11 @@
|
|||||||
import streamlit as st
|
import streamlit as st
|
||||||
from process_video import segment_video, classify
|
|
||||||
from io import StringIO
|
|
||||||
import cv2 as cv
|
|
||||||
import tempfile
|
|
||||||
import os
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
import tensorflow as tf
|
|
||||||
from crop_hand_skeleton import crop_hand
|
|
||||||
from cvzone.HandTrackingModule import HandDetector
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
|
|
||||||
model = tf.keras.models.load_model('model_pred/VGG16_sign_char_detection_model')
|
|
||||||
|
|
||||||
st.set_page_config(
|
|
||||||
page_title="Projekt widzenie"
|
|
||||||
)
|
|
||||||
st.title("Projekt rozpoznawanie liter z alfabetu znaków migowych z wideo")
|
|
||||||
|
|
||||||
st.write('Załaduj film')
|
st.set_page_config(
|
||||||
|
page_title="Projekt widzenie"
|
||||||
upload_movie = st.file_uploader("Wybierz film", type=["mp4"])
|
)
|
||||||
|
st.title("Projekt rozpoznawanie liter z alfabetu znaków migowych z wideo")
|
||||||
if upload_movie:
|
|
||||||
st.write("Film się ładuje.....")
|
|
||||||
tfile = tempfile.NamedTemporaryFile(delete=False)
|
|
||||||
tfile.write(upload_movie.read())
|
|
||||||
video_cap = cv.VideoCapture(tfile.name)
|
|
||||||
font = cv.FONT_HERSHEY_SIMPLEX
|
|
||||||
|
|
||||||
result, num, frames = segment_video(video_cap, fps=1.5)
|
|
||||||
st.write(f"Załadowano {num} klatek")
|
|
||||||
classifications = []
|
|
||||||
for img in result:
|
|
||||||
img_skeleton = crop_hand(img, detector)
|
|
||||||
img2= cv.resize(img_skeleton,dsize=(224,224))
|
|
||||||
#breakpoint()
|
|
||||||
img_np = np.asarray(img2)
|
|
||||||
classification = classify(img_np[:,:,::-1], model)
|
|
||||||
classifications.append(classification)
|
|
||||||
cv.putText(img_skeleton,
|
|
||||||
classification,
|
|
||||||
(20, 50),
|
|
||||||
font, 2,
|
|
||||||
(255, 255, 255),
|
|
||||||
6,
|
|
||||||
cv.LINE_4)
|
|
||||||
|
|
||||||
st.image(img_skeleton[:,:,::-1])
|
|
||||||
i = 0
|
|
||||||
last_letter = ''
|
|
||||||
text = ''
|
|
||||||
font = cv.FONT_HERSHEY_SIMPLEX
|
|
||||||
width, height, layers = result[0].shape
|
|
||||||
new_video_cap = cv.VideoCapture(tfile.name)
|
|
||||||
|
|
||||||
out = cv.VideoWriter("output_video.mp4",cv.VideoWriter_fourcc(*'mp4v'), 30, (300, 300))
|
|
||||||
print(f"VIDEO CAP {result[0].shape}")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
ret, frame = new_video_cap.read()
|
|
||||||
if ret == False:
|
|
||||||
break
|
|
||||||
image =cv.resize(frame, [300, 300])
|
|
||||||
|
|
||||||
image = cv.cvtColor(image, cv.COLOR_RGB2BGR)
|
st.write('Hello world')
|
||||||
cv.putText(image,
|
|
||||||
last_letter,
|
|
||||||
(50, 50),
|
|
||||||
font, 2,
|
|
||||||
(255, 255, 255),
|
|
||||||
6,
|
|
||||||
cv.LINE_4)
|
|
||||||
cv.imwrite(f'frames/post/{i}.jpg', image)
|
|
||||||
|
|
||||||
if i in frames:
|
|
||||||
print(i)
|
|
||||||
frame_index = frames.index(i)
|
|
||||||
letter = classifications[frame_index]
|
|
||||||
last_letter = letter
|
|
||||||
|
|
||||||
img = cv.imread(f"frames/post/{i}.jpg")
|
|
||||||
out.write(img)
|
|
||||||
|
|
||||||
i += 1
|
|
||||||
video_cap.release()
|
|
||||||
new_video_cap.release()
|
|
||||||
out.release()
|
|
||||||
|
|
||||||
os.system("ffmpeg -i output_video.mp4 -vcodec libx264 output_video2.mp4")
|
|
||||||
video_file = open('output_video2.mp4', 'rb')
|
|
||||||
|
|
||||||
st.video(video_file, format="video/mp4")
|
|
BIN
model_pred/sign_char_detection_model/fingerprint.pb
Normal file
18
model_pred/sign_char_detection_model/keras_metadata.pb
Normal file
BIN
model_pred/sign_char_detection_model/saved_model.pb
Normal file
BIN
model_pred/sign_char_detection_model/variables/variables.index
Normal file
@ -1 +0,0 @@
|
|||||||
q
|
|
13
pred_test.py
@ -9,10 +9,10 @@ import numpy as np
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
model = tf.keras.models.load_model('VGG19_model.hdf5')
|
model = tf.keras.models.load_model('model_pred/sign_char_detection_model')
|
||||||
|
|
||||||
# Get the list of all files and directories
|
# Get the list of all files and directories
|
||||||
path = "test_data_own_cropped"
|
path = "test_data"
|
||||||
dir_list = os.listdir(path)
|
dir_list = os.listdir(path)
|
||||||
|
|
||||||
print(dir_list)
|
print(dir_list)
|
||||||
@ -23,18 +23,15 @@ tf.keras.utils.load_img
|
|||||||
|
|
||||||
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
|
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
|
||||||
|
|
||||||
img_height=224
|
img_height=256
|
||||||
img_width=224
|
img_width=256
|
||||||
actual=[]
|
actual=[]
|
||||||
pred=[]
|
pred=[]
|
||||||
|
|
||||||
|
|
||||||
img_size = [img_height, img_width]
|
|
||||||
for i in dir_list:
|
for i in dir_list:
|
||||||
for j in os.listdir(path+'/'+i):
|
for j in os.listdir(path+'/'+i):
|
||||||
file_path = path+'/'+i + '/' + j
|
file_path = path+'/'+i + '/' + j
|
||||||
actual.append(i)
|
actual.append(i)
|
||||||
test_image = tf.keras.utils.load_img(file_path, target_size = img_size)
|
test_image = tf.keras.utils.load_img(file_path, target_size = (256, 256))
|
||||||
test_image = tf.keras.utils.img_to_array(test_image)
|
test_image = tf.keras.utils.img_to_array(test_image)
|
||||||
test_image = np.expand_dims(test_image, axis = 0)
|
test_image = np.expand_dims(test_image, axis = 0)
|
||||||
result = model.predict(test_image)
|
result = model.predict(test_image)
|
||||||
|
@ -1,68 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import tensorflow as tf
|
|
||||||
import numpy as np
|
|
||||||
from crop_hand_skeleton import crop_hand
|
|
||||||
from cvzone.HandTrackingModule import HandDetector
|
|
||||||
|
|
||||||
class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space']
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def segment_video(video, fps=5):
|
|
||||||
real_fps = video.get(cv2.CAP_PROP_FPS)
|
|
||||||
print(f"{real_fps=}")
|
|
||||||
if real_fps < fps:
|
|
||||||
raise Exception("Video FPS cannot be bigger than desired FPS!")
|
|
||||||
|
|
||||||
n = int(real_fps / fps)
|
|
||||||
|
|
||||||
result = []
|
|
||||||
frames_nums = []
|
|
||||||
i=0
|
|
||||||
num = 0
|
|
||||||
while True:
|
|
||||||
ret, frame = video.read()
|
|
||||||
if ret == False:
|
|
||||||
break
|
|
||||||
if i % n == 0:
|
|
||||||
result.append(frame)
|
|
||||||
frames_nums.append(i)
|
|
||||||
num += 1
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
return result, num, frames_nums
|
|
||||||
|
|
||||||
def save_frames(frames, dir):
|
|
||||||
detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8)
|
|
||||||
for i, frame in enumerate(frames):
|
|
||||||
print(i)
|
|
||||||
cv2.imwrite(f"{dir}/frame{i}.jpg", crop_hand(frame, detector))
|
|
||||||
|
|
||||||
|
|
||||||
def classify(img, model):
|
|
||||||
#img = cv2.resize(img, (224, 224))
|
|
||||||
img = tf.keras.utils.img_to_array(img)
|
|
||||||
img = np.expand_dims(img, axis = 0)
|
|
||||||
return class_names[np.argmax(model.predict(img))]
|
|
||||||
|
|
||||||
|
|
||||||
def read_saved_frames(dir, n):
|
|
||||||
result = []
|
|
||||||
for i in range(n):
|
|
||||||
img = tf.keras.utils.load_img(f"{dir}/frame{i}.jpg", target_size = [224, 224])
|
|
||||||
result.append(img)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
video = cv2.VideoCapture("mp.mp4")
|
|
||||||
model = tf.keras.models.load_model('model_pred/effnet_sign_char_detection_model')
|
|
||||||
|
|
||||||
frames, num = segment_video(video, 30)
|
|
||||||
print(num)
|
|
||||||
save_frames(frames, "frames")
|
|
||||||
frames = read_saved_frames("frames", num)
|
|
||||||
result = []
|
|
||||||
for frame in frames:
|
|
||||||
result.append(classify(frame, model))
|
|
||||||
print(result)
|
|
@ -1,6 +1,4 @@
|
|||||||
streamlit
|
streamlit
|
||||||
pandas
|
pandas
|
||||||
tensorflow
|
tensorflow
|
||||||
numpy
|
numpy
|
||||||
cvzone
|
|
||||||
mediapipe
|
|
Before Width: | Height: | Size: 6.3 KiB |
Before Width: | Height: | Size: 7.9 KiB |
Before Width: | Height: | Size: 9.1 KiB |
Before Width: | Height: | Size: 8.5 KiB |
Before Width: | Height: | Size: 7.8 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 9.3 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 9.9 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 8.4 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 8.7 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 4.1 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 35 KiB |
Before Width: | Height: | Size: 31 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 6.8 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 32 KiB |
Before Width: | Height: | Size: 8.6 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 31 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 30 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 10 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 31 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 30 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 25 KiB |