import cv2 import tensorflow as tf import numpy as np from crop_hand_skeleton import crop_hand from cvzone.HandTrackingModule import HandDetector class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space'] def segment_video(video, fps=5): real_fps = video.get(cv2.CAP_PROP_FPS) print(f"{real_fps=}") if real_fps < fps: raise Exception("Video FPS cannot be bigger than desired FPS!") n = real_fps / fps result = [] i=0 num = 0 while True: ret, frame = video.read() if ret == False: break if i % n == 0: result.append(frame) num += 1 i += 1 return result, num def save_frames(frames, dir): detector = HandDetector(maxHands=1, mode=True, detectionCon=0.7, minTrackCon=0.8) for i, frame in enumerate(frames): print(i) cv2.imwrite(f"{dir}/frame{i}.jpg", crop_hand(frame, detector)) def classify(img, model): #img = cv2.resize(img, (224, 224)) img = tf.keras.utils.img_to_array(img) img = np.expand_dims(img, axis = 0) return class_names[np.argmax(model.predict(img))] def read_saved_frames(dir, n): result = [] for i in range(n): img = tf.keras.utils.load_img(f"{dir}/frame{i}.jpg", target_size = [224, 224]) result.append(img) return result if __name__ == "__main__": video = cv2.VideoCapture("kamil_asl.mp4") model = tf.keras.models.load_model('model_pred/VGG16_sign_char_detection_model') frames, num = segment_video(video, 20) print(num) save_frames(frames, "frames") frames = read_saved_frames("frames", num) result = [] for frame in frames: result.append(classify(frame, model)) print(result)