import numpy as np import tensorflow as tf from tensorflow import keras model = keras.models.load_model('../sign_char_detection_model') class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space'] path_to_img = 'A_test_rect.png' def pred_sign_char(path_to_img: str): pred = [] test_image = tf.keras.utils.load_img(path_to_img, target_size = (256, 256)) test_image = tf.keras.utils.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) result = model.predict(test_image) print(result) pred.append(class_names[np.argmax(result)]) print(pred) return pred[0] pred_sign_char(path_to_img)