# # %% [markdown] # # # Prediction on the test data # # %% import os import pandas as pd import numpy as np import tensorflow as tf model = tf.keras.models.load_model('model_pred/sign_char_detection_model') # Get the list of all files and directories path = "test_data" dir_list = os.listdir(path) print(dir_list) # %% from sklearn.preprocessing import OneHotEncoder, LabelEncoder tf.keras.utils.load_img class_names = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'del', 'nothing', 'space'] img_height=256 img_width=256 actual=[] pred=[] for i in dir_list: for j in os.listdir(path+'/'+i): file_path = path+'/'+i + '/' + j actual.append(i) test_image = tf.keras.utils.load_img(file_path, target_size = (200, 200)) test_image = tf.keras.utils.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) result = model.predict(test_image) pred.append(class_names[np.argmax(result)]) from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import accuracy_score print("Test accuracy=",accuracy_score(pred,actual)) print("Classification report:\n",classification_report(pred,actual)) # %%