585 lines
311 KiB
Plaintext
585 lines
311 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# A Viz Showing The Ballon d'Or votings by players and the vote count recieved by each player for the respective position"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import json\n",
|
||
|
"from pandas.io.json import json_normalize\n",
|
||
|
"import numpy as np\n",
|
||
|
"import seaborn as sns\n",
|
||
|
"import pandas as pd\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"from matplotlib.patches import Arc, Rectangle, ConnectionPatch\n",
|
||
|
"from matplotlib.offsetbox import OffsetImage\n",
|
||
|
"#import squarify\n",
|
||
|
"from functools import reduce\n",
|
||
|
"import os\n",
|
||
|
"\n",
|
||
|
"df = pd.read_csv('Balon d\\'Or 2019 Stats - Sheet1.csv')\n",
|
||
|
"df = df.dropna()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Country</th>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>Albania</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Alisson</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>Algeria</td>\n",
|
||
|
" <td>Mane</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Mahrez</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Aguero</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>Andorra</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" <td>Mbappe</td>\n",
|
||
|
" <td>De Jong</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>Angola</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" <td>Mane</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>Argentina</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Aguero</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Benzema</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Country 1 2 3 4 5\n",
|
||
|
"1 Albania Ronaldo Van Dijk Messi Alisson Salah\n",
|
||
|
"2 Algeria Mane Messi Mahrez Van Dijk Aguero\n",
|
||
|
"4 Andorra Messi Salah Mbappe De Jong Ronaldo\n",
|
||
|
"5 Angola Van Dijk Ronaldo Messi Salah Mane\n",
|
||
|
"6 Argentina Messi Ronaldo Aguero Van Dijk Benzema"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df.rename(columns ={'1':'FirstChoice','2':'SecondChoice','3':'ThirdChoice','4':'FourthChoice','5':'FifthChoice'}, inplace = True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array(['Ronaldo', 'Mane ', 'Messi ', 'Van Dijk ', 'Ronaldo ', 'Van Dijk',\n",
|
||
|
" 'Salah ', 'Mane', 'Messi', 'Alisson ', 'Lewandowski ', 'Mbappe ',\n",
|
||
|
" 'Alexander-Arnold '], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.FirstChoice.unique()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df['FirstChoice'] = df.FirstChoice.str.strip()\n",
|
||
|
"df['SecondChoice'] = df.SecondChoice.str.strip()\n",
|
||
|
"df['ThirdChoice'] = df.ThirdChoice.str.strip()\n",
|
||
|
"df['FourthChoice'] = df.FourthChoice.str.strip()\n",
|
||
|
"df['FifthChoice'] = df.FifthChoice.str.strip()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Country</th>\n",
|
||
|
" <th>FirstChoice</th>\n",
|
||
|
" <th>SecondChoice</th>\n",
|
||
|
" <th>ThirdChoice</th>\n",
|
||
|
" <th>FourthChoice</th>\n",
|
||
|
" <th>FifthChoice</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>Albania</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Alisson</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>Algeria</td>\n",
|
||
|
" <td>Mane</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Mahrez</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Aguero</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>Andorra</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" <td>Mbappe</td>\n",
|
||
|
" <td>De Jong</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>Angola</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Salah</td>\n",
|
||
|
" <td>Mane</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>Argentina</td>\n",
|
||
|
" <td>Messi</td>\n",
|
||
|
" <td>Ronaldo</td>\n",
|
||
|
" <td>Aguero</td>\n",
|
||
|
" <td>Van Dijk</td>\n",
|
||
|
" <td>Benzema</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Country FirstChoice SecondChoice ThirdChoice FourthChoice FifthChoice\n",
|
||
|
"1 Albania Ronaldo Van Dijk Messi Alisson Salah\n",
|
||
|
"2 Algeria Mane Messi Mahrez Van Dijk Aguero\n",
|
||
|
"4 Andorra Messi Salah Mbappe De Jong Ronaldo\n",
|
||
|
"5 Angola Van Dijk Ronaldo Messi Salah Mane\n",
|
||
|
"6 Argentina Messi Ronaldo Aguero Van Dijk Benzema"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"unique_player = set()\n",
|
||
|
"unique_player.update(df.FirstChoice.unique())\n",
|
||
|
"unique_player.update(df.SecondChoice.unique())\n",
|
||
|
"unique_player.update(df.ThirdChoice.unique())\n",
|
||
|
"unique_player.update(df.FourthChoice.unique())\n",
|
||
|
"unique_player.update(df.FifthChoice.unique())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df_agg = pd.DataFrame(list(unique_player),columns=['Players'])#\n",
|
||
|
"\n",
|
||
|
"df_agg['First'] = ''\n",
|
||
|
"df_agg['Second'] = ''\n",
|
||
|
"df_agg['Third'] = ''\n",
|
||
|
"df_agg['Fourth'] = ''\n",
|
||
|
"df_agg['Fifth'] = ''\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"for i in unique_player:\n",
|
||
|
" df_agg['First'][df_agg.Players == i] = df[df.FirstChoice == i].count()[0]\n",
|
||
|
" df_agg['Second'][df_agg.Players == i] = df[df.SecondChoice == i].count()[0]\n",
|
||
|
" df_agg['Third'][df_agg.Players == i] = df[df.ThirdChoice == i].count()[0]\n",
|
||
|
" df_agg['Fourth'][df_agg.Players == i] = df[df.FourthChoice == i].count()[0]\n",
|
||
|
" df_agg['Fifth'][df_agg.Players == i] = df[df.FifthChoice == i].count()[0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Players</th>\n",
|
||
|
" <th>First</th>\n",
|
||
|
" <th>Second</th>\n",
|
||
|
" <th>Third</th>\n",
|
||
|
" <th>Fourth</th>\n",
|
||
|
" <th>Fifth</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>Tadic</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>Sterling</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>7</td>\n",
|
||
|
" <td>10</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>Griezmann</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>Mbappe</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>4</td>\n",
|
||
|
" <td>6</td>\n",
|
||
|
" <td>13</td>\n",
|
||
|
" <td>16</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>Koulibaly</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Players First Second Third Fourth Fifth\n",
|
||
|
"0 Tadic 0 0 0 2 1\n",
|
||
|
"1 Sterling 0 0 2 7 10\n",
|
||
|
"2 Griezmann 0 0 1 2 2\n",
|
||
|
"3 Mbappe 2 4 6 13 16\n",
|
||
|
"4 Koulibaly 0 0 0 1 0"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"df_agg.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"plot = df_agg.melt('Players',var_name='for hue', value_name='value')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<style scoped>\n",
|
||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||
|
" vertical-align: middle;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe tbody tr th {\n",
|
||
|
" vertical-align: top;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" .dataframe thead th {\n",
|
||
|
" text-align: right;\n",
|
||
|
" }\n",
|
||
|
"</style>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Players</th>\n",
|
||
|
" <th>for hue</th>\n",
|
||
|
" <th>value</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>Tadic</td>\n",
|
||
|
" <td>First</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>Sterling</td>\n",
|
||
|
" <td>First</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>Griezmann</td>\n",
|
||
|
" <td>First</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>Mbappe</td>\n",
|
||
|
" <td>First</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>Koulibaly</td>\n",
|
||
|
" <td>First</td>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Players for hue value\n",
|
||
|
"0 Tadic First 0\n",
|
||
|
"1 Sterling First 0\n",
|
||
|
"2 Griezmann First 0\n",
|
||
|
"3 Mbappe First 2\n",
|
||
|
"4 Koulibaly First 0"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plot.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"Text(0.5, 0, 'Players')"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAACkUAAAZNCAYAAABxocT6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3X+M1/V9B/DX/eSO44A77oqicBsWhMbStOJAqZ1WoxVsZaDYaiPptEw2hrMxW7XZ1q5Jt5Ao2ppIs7arltp2FI2o4NHN2tkSKM0EqlVAliLqafnNAYd8j7v91abXz/fwvt/7ybuPR9JkeX4/79fnReGv5dn3p6Szs7MzAAAAAAAAAAAAAM5wpYO9AAAAAAAAAAAAAEBfUIoEAAAAAAAAAAAAkqAUCQAAAAAAAAAAACRBKRIAAAAAAAAAAABIglIkAAAAAAAAAAAAkASlSAAAAAAAAAAAACAJSpEAAAAAAAAAAABAEpQiAQAAAAAAAAAAgCQoRQIAAAAAAAAAAABJUIoEAAAAAAAAAAAAkqAUCQAAAAAAAAAAACRBKRIAAAAAAAAAAABIglIkAAAAAAAAAAAAkITywV6AdB08eCw6OjoHew0AAAAAAAAAAOiitLQk6upqBnsNoB8oRdJvOjo6lSIBAAAAAAAAAAAYMD6fDQAAAAAAAAAAACRBKRIAAAAAAAAAAABIglIkAAAAAAAAAAAAkASlSAAAAAAAAAAAACAJSpEAAAAAAAAAAABAEpQiAQAAAAAAAAAAgCQoRQIAAAAAAAAAAABJUIoEAAAAAAAAAAAAkqAUCQAAAAAAAAAAACRBKRIAAAAAAAAAAABIglIkAAAAAAAAAAAAkASlSAAAAAAAAAAAACAJSpEAAAAAAAAAAABAEpQiAQAAAAAAAAAAgCSUD/YC9I+Ojo7YsWNH7Ny5M/bt2xdtbW1RXV0dDQ0NMWnSpJg8eXKUlurEAgAAAAAAAAAAkA6lyAJ87WtfiwcffLDf3/PII4/EjBkzijq7e/fueOSRR2Lt2rVx4MCBbp+rr6+P2bNnx8KFC2PChAnFrgoAAAAAAAAAAABDhqsCE9He3h7Lly+POXPmxMqVK09biIyIOHDgQKxcuTJmz54dy5cvj/b29gHaFAAAAAAAAAAAAPqHUuQQU1paGuPHjy/ozLFjx+LWW2+NFStWRC6XK+hsLpeLFStWxK233hrHjh0r6CwAAAAAAAAAAAAMJUqRQ8zMmTNj3LhxPX4+l8vF7bffHhs3bsz7e0VFRbzvfe+Liy++OC644IKoqqrK+9zGjRtj8eLFBZcqAQAAAAAAAAAAYKgoH+wFziQ33HBDXHrppX0yq7m5Ob71rW9l8vnz5xc05957742f//znmXz06NGxdOnSmDt3btTU1Pwuf+edd2LdunVx//33R0tLS5czmzZtinvvvTc+//nPF7QDAAAAAAAAAAAADAUlnZ2dnYO9xB+jT3/607F58+Yu2ahRo+L555+PYcOG9WjGtm3bYsGCBfGHf4VNTU3x7W9/+7Q3Th48eDAWLVoU27Zt65KXlpbGf/7nf8b73//+Hv5Jurd//9Ho6PDPCwAAAAAAAACAoaW0tCTGjBkx2GsA/cDnswfBa6+9Fr/4xS8y+Zw5c3pciIyIWLZsWaYQWVNTE//+7//+rp/grquri69//esxduzYLnlHR0csW7asxzsAAAAAAAAAAADAUKEUOQhWr16dKTNGRMybN6/HM7Zs2ZK5aTIiYsmSJdHU1NSjGfX19XHPPfdk8p///OexZcuWHu8CAAAAAAAAAAAAQ4FS5ADr6OiIJ554IpOff/75BX2y+gc/+EEmq6uri5tvvrmgfT72sY/FpEmTMvmqVasKmgMAAAAAAAAAAACDTSlygG3YsCFaWloyeSG3ROZyufjRj36Uya+77rqCPr/9W9dff30ma25ujlwuV/AsAAAAAAAAAAAAGCxKkQNs9erVmayioiI+8YlP9HjGli1borW1NZNfddVVRe109dVXZ7LW1tbYunVrUfMAAAAAAAAAAABgMChFDqDDhw/Hf/3Xf2Xyyy+/POrr63s8Z9OmTZls+PDh8YEPfKCovc4+++xoamrK5Bs3bixqHgAAAAAAAAAAAAwGpcgB9NRTT8XJkycz+fz58wua8+KLL2ayqVOnRnl5edG7vf/9789kL730UtHzAAAAAAAAAAAAYKApRQ6gfJ/ObmxsjEsvvbSgOdu3b89kkyZNKnqviIjzzz+/R+8BAAAAAAAAAACAoUopcoBs3749782Lc+fOjbKysh7POXnyZLz11luZPN/nrwsxfvz4TNbS0hK5XK5XcwEAAAAAAAAAAGCgKEUOkMceeyxvPm/evILmvPXWW9HR0ZHJx44dW9Repzvf0dGRt4AJAAAAAAAAAAAAQ5FS5ADI5XKxZs2aTP7BD34wJk6cWNCsAwcO5M3HjBlT1G6/1djYWND7AAAAAAAAAAAAYKhRihwAzz33XN5y4fz58wuedfjw4bx5bW1twbN+X01NTd780KFDvZoLAAAAAAAAAAAAA6V8sBf4Y7B69epMNnz48Jg9e3bBs44dO5Y3r66uLnjWH+6TT1tbW9Ezx4wZUfRZAAAAAAAAAAAAKJRSZD/bu3dvPP/885n8Yx/7WLe3M55Oe3t73ry8vHd/ld2dz+VyRc/cv/9odHR0Fn0eAAAAAAAAAAD6Q2lpiQu/IFE+n93PnnjiibxFxnnz5hU1r6OjI29eWtq7v8qysrK8+alTp3o1FwAAAAAAAAAAAAaKUmQ/e+yxxzJZU1NTXHTRRUXN66/yYn/dQAkAAAAAAAAAAAADRSmyH23ZsiV27dqVyYu9JTIiorKyMm/em89cn+58d+8DAAAAAAAAAACAoUYpsh/luyWytLQ05s6dW/TMmpqavPnx48eLnhkRcezYsbz5iBEjejUXAAAAAAAAAAAABopSZD85ceJErF27NpPPmjUrzjrrrKLnjh49Om9+5MiRomee7vyoUaN6NRcAAAAAAAAAAAAGilJkP2lubo7W1tZMPn/+/F7NbWxszJvv27evV3O7O9/Q0NCruQAAAAAAAAAAADBQlCL7Sb5PZ48ePTquuOKKXs1tbGyMioqKTP7mm2/2am5LS0smq6ysjPe85z29mgsAAAAAAAAAAAADRSmyH7z++uuxadOmTP7xj388KisrezW7tLQ0JkyYkMl//etf92ru7t27M1lTU1OUlJT0ai4AAAAAAAAAAAAMFKXIfvD4449HZ2dnJu/tp7N/a+rUqZnslVde6dXMl19+OZNNmTKlVzMBAAAAAAAAAABgIClF9rHOzs54/PHHM/nUqVPzlhmLMW3atEy2a9euOHr0aFHzOjs7Y+vWrT16DwAAAAAAAAAAAAxVSpF9bOPGjfHGG29k8r66JTIi4uKLL85k7e3tsXHjxqLm/epXv4oDBw5k8ksuuaSoeQAAAAAAAAAAADAYlCL72OrVqzNZZWVlfPzjH++zd0yePDnOPffcTL527dqi5uU7N378+Hjve99b1DwAAAAAAAAAAAAYDEqRfejo0aPxox/9KJNfccUVMXr06D59V76S5fr16+Ptt98uaM6JEyfyFjmvvfbaoncDAAAAAAAAAACAwaAU2YeefvrpOHHiRCafN29en79rwYIFUV5e3iXL5XLx1a9+taA53/zmN+PgwYNdsoqKirjxxht7vSMAAAAAQMpqR1ZFY2Ntj/9TO7JqsFcGAAAASF75uz9CT+W7cfGss86KD3/4w33+rnHjxsV1112XeecPf/jDuPzyy+PKK6981xnbtm2Lhx56KJNfd911cfbZZ/fZrgAAAAAAKaoaVhE3/f13e/z8o8tujtbI/g/rAQAAAOg7borsI7t27YqtW7dm8rlz50Zpaf/81/y5z30uRowYkTdvbm4+7dnNmzfHZz/72cjlcl3y2trauPPOO/t0TwAAAAAAAAAAABgISpF9JN8tkRH98+ns32poaIgvfelLmfydd96JpUuXxuLFi+PHP/5xHDhwIE6dOhWHDh2KDRs2xF133RW33HJLHDp0KHP
|
||
|
"text/plain": [
|
||
|
"<Figure size 2880x1440 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import seaborn as sns\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"bg = \"#181818\"\n",
|
||
|
"a4_dims = (40 ,20)\n",
|
||
|
"fig, ax = plt.subplots(figsize=a4_dims)\n",
|
||
|
"sns.set(rc={ 'grid.color': '#5c5b5b','grid.linestyle': ' ','axes.edgecolor': '#000000','axes.facecolor':bg, 'figure.facecolor':bg,'ytick.color':'white','xtick.color':'white' ,'axes.labelcolor': 'white','text.color': 'white'})\n",
|
||
|
"plt.xticks(rotation=90)\n",
|
||
|
"sns.set(font_scale = 5)\n",
|
||
|
"ax = sns.barplot(x=\"Players\", y=\"value\", hue=\"for hue\", data=plot)\n",
|
||
|
"plt.legend(scatterpoints=1,\n",
|
||
|
" bbox_to_anchor=(1, 0.7), loc=2, borderaxespad=1.,\n",
|
||
|
" ncol=1,\n",
|
||
|
" fontsize=29)\n",
|
||
|
"plt.xlabel('Players', fontsize=16)\n",
|
||
|
"#plt.ylabel('Vote Count', fontsize=16)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.9"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|