diff --git a/xGStatsbombBarca.ipynb b/xGStatsbombBarca.ipynb
new file mode 100644
index 0000000..f3748c5
--- /dev/null
+++ b/xGStatsbombBarca.ipynb
@@ -0,0 +1,1863 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "xGStatsbombBarca.ipynb",
+ "provenance": [],
+ "authorship_tag": "ABX9TyMF97QRHrDYc7GbvezxKQ7E",
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "g37QpaaPZHA5",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 187
+ },
+ "outputId": "c8ee2fc2-3a61-41a1-dc0a-c5b738da11d3"
+ },
+ "source": [
+ "%%time\n",
+ "!git clone https://github.com/statsbomb/open-data.git"
+ ],
+ "execution_count": 1,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Cloning into 'open-data'...\n",
+ "remote: Enumerating objects: 1088, done.\u001b[K\n",
+ "remote: Counting objects: 100% (1088/1088), done.\u001b[K\n",
+ "remote: Compressing objects: 100% (591/591), done.\u001b[K\n",
+ "remote: Total 9810 (delta 893), reused 674 (delta 479), pack-reused 8722\u001b[K\n",
+ "Receiving objects: 100% (9810/9810), 995.57 MiB | 14.28 MiB/s, done.\n",
+ "Resolving deltas: 100% (8640/8640), done.\n",
+ "Checking out files: 100% (1648/1648), done.\n",
+ "CPU times: user 548 ms, sys: 115 ms, total: 663 ms\n",
+ "Wall time: 2min 44s\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "nd6vcG3uZNJb",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "#import all modules\n",
+ "import json\n",
+ "import os\n",
+ "import codecs\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from matplotlib.patches import Arc, Rectangle, ConnectionPatch\n",
+ "from matplotlib.offsetbox import OffsetImage\n",
+ "from matplotlib.patches import Ellipse\n",
+ "from functools import reduce\n",
+ "import math"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "5NMxa9NNZR5m",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 68
+ },
+ "outputId": "133de3d7-2515-4ec6-f479-d4c69cee4f8c"
+ },
+ "source": [
+ "%%time\n",
+ "comp = ['FIFA World Cup','La Liga']\n",
+ "main_df = pd.DataFrame(data=None)\n",
+ "path_match = \"/content/open-data/data/events/\" #location for play by play events\n",
+ "for root, dirs, files in os.walk('/content/open-data/data/matches/'):\n",
+ " for file in files:\n",
+ " with open(os.path.join(root, file), \"r\") as auto:\n",
+ " with codecs.open(root + str('/') + file,encoding='utf-8') as data_file:\n",
+ " data = json.load(data_file)\n",
+ " df = pd.DataFrame(data=None)\n",
+ " df = pd.json_normalize(data, sep = \"_\")\n",
+ " #for x in df.competition_country_name:\n",
+ " # if x == 'Spain':\n",
+ " # print(df.match_id)\n",
+ " #print(df['competition_competition_name'])\n",
+ " for i in range(len(df)):\n",
+ " if df.iloc[i]['competition_competition_name'] in comp :\n",
+ " match_no = df.iloc[i]['match_id'] #gets match with Spain as country\n",
+ " match_no = str(match_no) # from int to str \n",
+ " #print('match list \\n',match_no)\n",
+ " with codecs.open(path_match + match_no + str(r'.json'),encoding=\"utf8\") as event_file: #open the respective file\n",
+ " df_match = json.load(event_file)\n",
+ " df_match2 = pd.DataFrame(data=None)\n",
+ " df_match2 = pd.json_normalize(df_match,sep=\"_\") \n",
+ " df_match2 = df_match2[(df_match2['type_name'] == \"Shot\")]\n",
+ " main_df = main_df.append(df_match2,ignore_index=True,sort=False) \n",
+ "#print('total matches ',len(match_no)) \n",
+ "print('Done')"
+ ],
+ "execution_count": 3,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Done\n",
+ "CPU times: user 6min 3s, sys: 1.3 s, total: 6min 4s\n",
+ "Wall time: 6min 4s\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "waQI6t6OVM33",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 508
+ },
+ "outputId": "59fa3bca-64b8-4260-b33a-b34cbfdd9248"
+ },
+ "source": [
+ "main_df.head()"
+ ],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " index | \n",
+ " period | \n",
+ " timestamp | \n",
+ " minute | \n",
+ " second | \n",
+ " possession | \n",
+ " duration | \n",
+ " type_id | \n",
+ " type_name | \n",
+ " possession_team_id | \n",
+ " possession_team_name | \n",
+ " play_pattern_id | \n",
+ " play_pattern_name | \n",
+ " team_id | \n",
+ " team_name | \n",
+ " tactics_formation | \n",
+ " tactics_lineup | \n",
+ " related_events | \n",
+ " location | \n",
+ " player_id | \n",
+ " player_name | \n",
+ " position_id | \n",
+ " position_name | \n",
+ " pass_recipient_id | \n",
+ " pass_recipient_name | \n",
+ " pass_length | \n",
+ " pass_angle | \n",
+ " pass_height_id | \n",
+ " pass_height_name | \n",
+ " pass_end_location | \n",
+ " pass_type_id | \n",
+ " pass_type_name | \n",
+ " pass_body_part_id | \n",
+ " pass_body_part_name | \n",
+ " carry_end_location | \n",
+ " under_pressure | \n",
+ " pass_outcome_id | \n",
+ " pass_outcome_name | \n",
+ " pass_aerial_won | \n",
+ " ... | \n",
+ " substitution_outcome_id | \n",
+ " substitution_outcome_name | \n",
+ " substitution_replacement_id | \n",
+ " substitution_replacement_name | \n",
+ " shot_one_on_one | \n",
+ " bad_behaviour_card_id | \n",
+ " bad_behaviour_card_name | \n",
+ " 50_50_outcome_id | \n",
+ " 50_50_outcome_name | \n",
+ " dribble_overrun | \n",
+ " goalkeeper_punched_out | \n",
+ " pass_miscommunication | \n",
+ " block_deflection | \n",
+ " pass_goal_assist | \n",
+ " clearance_other | \n",
+ " injury_stoppage_in_chain | \n",
+ " shot_deflected | \n",
+ " dribble_no_touch | \n",
+ " pass_deflected | \n",
+ " shot_saved_off_target | \n",
+ " goalkeeper_shot_saved_off_target | \n",
+ " ball_recovery_offensive | \n",
+ " pass_straight | \n",
+ " foul_committed_penalty | \n",
+ " foul_won_penalty | \n",
+ " block_save_block | \n",
+ " shot_open_goal | \n",
+ " goalkeeper_lost_out | \n",
+ " goalkeeper_success_in_play | \n",
+ " player_off_permanent | \n",
+ " goalkeeper_shot_saved_to_post | \n",
+ " shot_redirect | \n",
+ " shot_saved_to_post | \n",
+ " shot_follows_dribble | \n",
+ " goalkeeper_success_out | \n",
+ " half_start_late_video_start | \n",
+ " goalkeeper_lost_in_play | \n",
+ " goalkeeper_saved_to_post | \n",
+ " pass_backheel | \n",
+ " half_end_early_video_end | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 2f046b33-685c-4122-8af2-8ceadf56c83d | \n",
+ " 294 | \n",
+ " 1 | \n",
+ " 00:06:50.216 | \n",
+ " 6 | \n",
+ " 50 | \n",
+ " 12 | \n",
+ " 0.115400 | \n",
+ " 16 | \n",
+ " Shot | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " 4 | \n",
+ " From Throw In | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " [58295c63-1ffa-4e27-9258-818ea90c6b04, f514442... | \n",
+ " [104.4, 41.8] | \n",
+ " 5503.0 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 17.0 | \n",
+ " Right Wing | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 855d47fc-9017-4508-8b41-0275dfb4d755 | \n",
+ " 962 | \n",
+ " 1 | \n",
+ " 00:22:27.038 | \n",
+ " 22 | \n",
+ " 27 | \n",
+ " 38 | \n",
+ " 2.046458 | \n",
+ " 16 | \n",
+ " Shot | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " 2 | \n",
+ " From Corner | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " [aec80f5c-807e-47ac-8c33-092c92b222d1] | \n",
+ " [110.8, 35.8] | \n",
+ " 5470.0 | \n",
+ " Ivan Rakitić | \n",
+ " 10.0 | \n",
+ " Center Defensive Midfield | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 7c69fb86-c77d-463b-8f00-503e447492a4 | \n",
+ " 1153 | \n",
+ " 1 | \n",
+ " 00:27:08.522 | \n",
+ " 27 | \n",
+ " 8 | \n",
+ " 46 | \n",
+ " 0.804175 | \n",
+ " 16 | \n",
+ " Shot | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " 2 | \n",
+ " From Corner | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " [350f13e2-16cc-449d-a72d-f7ccd571fc50, 662299b... | \n",
+ " [109.9, 40.5] | \n",
+ " 5492.0 | \n",
+ " Samuel Yves Umtiti | \n",
+ " 5.0 | \n",
+ " Left Center Back | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " True | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 77ea8775-f9f4-4bf7-b3f9-7635ab861ab5 | \n",
+ " 1254 | \n",
+ " 1 | \n",
+ " 00:30:13.151 | \n",
+ " 30 | \n",
+ " 13 | \n",
+ " 59 | \n",
+ " 0.380900 | \n",
+ " 16 | \n",
+ " Shot | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " 3 | \n",
+ " From Free Kick | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " [30b9d0e1-5eeb-4cb0-86ea-a6e8967893e2, ae620c7... | \n",
+ " [90.0, 36.2] | \n",
+ " 5503.0 | \n",
+ " Lionel Andrés Messi Cuccittini | \n",
+ " 17.0 | \n",
+ " Right Wing | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 09c2667a-4827-4871-a70a-96adb1d73243 | \n",
+ " 1381 | \n",
+ " 1 | \n",
+ " 00:33:19.875 | \n",
+ " 33 | \n",
+ " 19 | \n",
+ " 63 | \n",
+ " 0.222600 | \n",
+ " 16 | \n",
+ " Shot | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " 4 | \n",
+ " From Throw In | \n",
+ " 217 | \n",
+ " Barcelona | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " [19491e5f-dd7c-47a8-994d-b6aae0630b55, a81b342... | \n",
+ " [97.3, 28.8] | \n",
+ " 6998.0 | \n",
+ " Rafael Alcântara do Nascimento | \n",
+ " 15.0 | \n",
+ " Left Center Midfield | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 147 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id ... half_end_early_video_end\n",
+ "0 2f046b33-685c-4122-8af2-8ceadf56c83d ... NaN\n",
+ "1 855d47fc-9017-4508-8b41-0275dfb4d755 ... NaN\n",
+ "2 7c69fb86-c77d-463b-8f00-503e447492a4 ... NaN\n",
+ "3 77ea8775-f9f4-4bf7-b3f9-7635ab861ab5 ... NaN\n",
+ "4 09c2667a-4827-4871-a70a-96adb1d73243 ... NaN\n",
+ "\n",
+ "[5 rows x 147 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 7
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "DmLHncoSWCwg",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 187
+ },
+ "outputId": "46d6e21e-32b0-43fd-e0fc-eeeed7e9bf52"
+ },
+ "source": [
+ "main_df['play_pattern_id'].value_counts()"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "1 4646\n",
+ "3 3026\n",
+ "4 1954\n",
+ "2 1818\n",
+ "6 557\n",
+ "7 426\n",
+ "5 223\n",
+ "9 155\n",
+ "8 152\n",
+ "Name: play_pattern_id, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 8
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "BkwL_gQWYF3Z",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ },
+ "outputId": "5d3f96c9-a05b-499b-bd65-fc7d8d345c1d"
+ },
+ "source": [
+ "main_df['location'].iloc[0]"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "[104.4, 41.8]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 11
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "WPZPi5M7ZI5o",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "def distFormula(coordinate):\n",
+ " a =(math.sqrt(((coordinate.location[0] - 120)**2) + ((coordinate.location[1] - 36)**2))) \n",
+ " b =(math.sqrt(((coordinate.location[0] - 120)**2) + ((coordinate.location[1] - 44)**2))) \n",
+ " return ((a+b)/2)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "ZRX43XViZshf",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\" near x y (nx,ny) (100,54)and far x y (fx,fy) (100,46)\"\"\" \n",
+ "nx = 120\n",
+ "ny = 44\n",
+ "fx = 120\n",
+ "fy = 36\n",
+ "\n",
+ "goalpostLength = 8\n",
+ "def shot_angle(points):\n",
+ " len1 = (math.sqrt(((points.location[0] - nx)**2) + ((points.location[1] - ny)**2))) \n",
+ " len2 = (math.sqrt(((points.location[0] - fx)**2) + ((points.location[1] - fy)**2)))\n",
+ " ang = (len1**2 + len2**2 - goalpostLength**2)/(2 * len1 * len2)\n",
+ " if ang > 1:\n",
+ " ang = 1\n",
+ " elif ang < -1:\n",
+ " ang = -1 \n",
+ " angRad = math.acos(ang)\n",
+ " return( (angRad * 180)/math.pi) "
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Skzv7m2GcOek",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"If shot was taken under Pressure?\"\"\"\n",
+ "def under_pressure(coordinate):\n",
+ " if coordinate['under_pressure'] == True:\n",
+ " return 1\n",
+ " return 0"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VRBmlZBtdbCf",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"The Shot type Id\"\"\"\n",
+ "def shot_type(coordinate):\n",
+ " if coordinate['shot_type_id'] == 61:\n",
+ " return 1\n",
+ " if coordinate['shot_type_id'] == 62:\n",
+ " return 2\n",
+ " if coordinate['shot_type_id'] == 87:\n",
+ " return 3\n",
+ " if coordinate['shot_type_id'] == 88:\n",
+ " return 4\n",
+ " return 5"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "SfSB2laheYY4",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"The Shot Body part\"\"\"\n",
+ "def shot_body_part(coordinate):\n",
+ " if coordinate['shot_body_part_id'] == 37:\n",
+ " return 1\n",
+ " if coordinate['shot_body_part_id'] == 38:\n",
+ " return 2\n",
+ " if coordinate['shot_body_part_id'] == 70:\n",
+ " return 3\n",
+ " return 4"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "XshqSKelezC2",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"The Shot Technique Id\"\"\"\n",
+ "def shot_technique(coordinate):\n",
+ " if coordinate['shot_technique_id'] == 89:\n",
+ " return 1\n",
+ " if coordinate['shot_technique_id'] == 90:\n",
+ " return 2\n",
+ " if coordinate['shot_technique_id'] == 91:\n",
+ " return 3\n",
+ " if coordinate['shot_technique_id'] == 92:\n",
+ " return 4\n",
+ " if coordinate['shot_technique_id'] == 93:\n",
+ " return 5\n",
+ " if coordinate['shot_technique_id'] == 94:\n",
+ " return 6\n",
+ " return 7"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "7DLY4vXtffsL",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"If shot was taken first time?\"\"\"\n",
+ "def shot_first_time(coordinate):\n",
+ " if coordinate['shot_first_time'] == True:\n",
+ " return 1\n",
+ " return 0"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "U0pQQZPDf4oV",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\"\"\"If shot was taken first time?\"\"\"\n",
+ "def shot_one_on_one(coordinate):\n",
+ " if coordinate['shot_one_on_one'] == True:\n",
+ " return 1\n",
+ " return 0"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "J2Qd_aEHZaja",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "main_df['Distance'] = main_df.apply(distFormula,axis = 1)\n",
+ "main_df['Angle'] = main_df.apply(shot_angle,axis = 1)\n",
+ "main_df['UnderPressure'] = main_df.apply(under_pressure,axis = 1)\n",
+ "main_df['ShotType'] = main_df.apply(shot_type,axis = 1)\n",
+ "main_df['ShotBodyPart'] = main_df.apply(shot_body_part,axis = 1)\n",
+ "main_df['ShotTechnique'] = main_df.apply(shot_technique,axis = 1)\n",
+ "main_df['ShotFirstTime'] = main_df.apply(shot_first_time,axis = 1)\n",
+ "main_df['ShotOneonOne']= main_df.apply(shot_one_on_one,axis = 1)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VbP_YO_tg694",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "goals_lst = main_df[main_df['shot_outcome_id'] == 97].index.tolist()"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "e4X-RpdOguqH",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "#if shot is a goal \n",
+ "main_df['isGoal'] = False\n",
+ "goals_lst\n",
+ "main_df.loc[main_df.index.isin(goals_lst),'isGoal'] = True"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "ddhlIVCHbZ-_",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 419
+ },
+ "outputId": "aa8e71b7-9573-4a33-e875-0542680136ef"
+ },
+ "source": [
+ "main_df[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne','isGoal']]"
+ ],
+ "execution_count": 62,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " location | \n",
+ " Distance | \n",
+ " Angle | \n",
+ " UnderPressure | \n",
+ " ShotType | \n",
+ " ShotBodyPart | \n",
+ " ShotTechnique | \n",
+ " ShotFirstTime | \n",
+ " ShotOneonOne | \n",
+ " isGoal | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " [104.4, 41.8] | \n",
+ " 16.198841 | \n",
+ " 28.422114 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " [110.8, 35.8] | \n",
+ " 10.763067 | \n",
+ " 40.465393 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " [109.9, 40.5] | \n",
+ " 10.873186 | \n",
+ " 43.128076 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " [90.0, 36.2] | \n",
+ " 30.499043 | \n",
+ " 14.956182 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " [97.3, 28.8] | \n",
+ " 25.566766 | \n",
+ " 16.208386 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 12952 | \n",
+ " [111.0, 27.0] | \n",
+ " 15.981653 | \n",
+ " 17.102729 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 12953 | \n",
+ " [114.0, 33.0] | \n",
+ " 9.619084 | \n",
+ " 34.824489 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 12954 | \n",
+ " [107.0, 32.0] | \n",
+ " 15.646638 | \n",
+ " 25.606661 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 12955 | \n",
+ " [97.0, 22.0] | \n",
+ " 29.376742 | \n",
+ " 12.398277 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 12956 | \n",
+ " [109.0, 52.0] | \n",
+ " 16.508979 | \n",
+ " 19.464104 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
12957 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " location Distance Angle ... ShotFirstTime ShotOneonOne isGoal\n",
+ "0 [104.4, 41.8] 16.198841 28.422114 ... 1 0 False\n",
+ "1 [110.8, 35.8] 10.763067 40.465393 ... 0 0 False\n",
+ "2 [109.9, 40.5] 10.873186 43.128076 ... 0 0 False\n",
+ "3 [90.0, 36.2] 30.499043 14.956182 ... 0 0 False\n",
+ "4 [97.3, 28.8] 25.566766 16.208386 ... 0 0 False\n",
+ "... ... ... ... ... ... ... ...\n",
+ "12952 [111.0, 27.0] 15.981653 17.102729 ... 0 0 False\n",
+ "12953 [114.0, 33.0] 9.619084 34.824489 ... 0 0 True\n",
+ "12954 [107.0, 32.0] 15.646638 25.606661 ... 0 0 False\n",
+ "12955 [97.0, 22.0] 29.376742 12.398277 ... 0 0 False\n",
+ "12956 [109.0, 52.0] 16.508979 19.464104 ... 0 0 False\n",
+ "\n",
+ "[12957 rows x 10 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 62
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "KCl0-Opqhxx-",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "import xgboost as xgb\n",
+ "from sklearn import svm\n",
+ "from sklearn import linear_model"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Q5_VKZrBhyRi",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "xgModel = main_df[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne','isGoal']]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "WOLF5IqBh1Nx",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "X_train,X_test,y_train,y_test = train_test_split(xgModel[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']],xgModel['isGoal'],test_size = 0.2,shuffle = True)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "fwxMcSWQiCbw",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "clf = LogisticRegression(random_state=0,max_iter = 5000).fit(X_train[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']], y_train)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "v2sAXpKaiS7d",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 51
+ },
+ "outputId": "e53dfd53-f6db-45f5-a800-1c7b3bea10e4"
+ },
+ "source": [
+ "#model weights\n",
+ "clf.coef_[0]"
+ ],
+ "execution_count": 99,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([-0.06605534, 0.02878253, -0.60546461, 1.03559372, 0.18762927,\n",
+ " 0.01151648, 0.18877916, 0.57099517])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 99
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "02YCl85sicPO",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "xG = clf.predict_proba(X_test[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']])[:,1]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "WmD0Au5iv0Lh",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119
+ },
+ "outputId": "9f6610d6-0166-410b-a5df-10107647e772"
+ },
+ "source": [
+ "#SGD\n",
+ "sgdclf = linear_model.SGDClassifier(loss='log', alpha = 0.17)\n",
+ "sgdclf.fit(X_train[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']], y_train)"
+ ],
+ "execution_count": 77,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "SGDClassifier(alpha=0.17, average=False, class_weight=None,\n",
+ " early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,\n",
+ " l1_ratio=0.15, learning_rate='optimal', loss='log', max_iter=1000,\n",
+ " n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5,\n",
+ " random_state=None, shuffle=True, tol=0.001,\n",
+ " validation_fraction=0.1, verbose=0, warm_start=False)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 77
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "P8yo8gQev-q8",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "xG = sgdclf.predict_proba(X_test[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']])[:,1]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xL2vLcVfihcb",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ },
+ "outputId": "2e44cbbb-3847-46f3-e5b1-ed8fc46f4620"
+ },
+ "source": [
+ "X_test['xG'] = xG\n",
+ "X_test.head()"
+ ],
+ "execution_count": 101,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " location | \n",
+ " Distance | \n",
+ " Angle | \n",
+ " UnderPressure | \n",
+ " ShotType | \n",
+ " ShotBodyPart | \n",
+ " ShotTechnique | \n",
+ " ShotFirstTime | \n",
+ " ShotOneonOne | \n",
+ " xG | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2961 | \n",
+ " [92.2, 58.9] | \n",
+ " 33.779300 | \n",
+ " 11.289656 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.035840 | \n",
+ "
\n",
+ " \n",
+ " 10990 | \n",
+ " [115.2, 45.8] | \n",
+ " 8.019390 | \n",
+ " 43.348531 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0.340789 | \n",
+ "
\n",
+ " \n",
+ " 12649 | \n",
+ " [115.0, 41.0] | \n",
+ " 6.451010 | \n",
+ " 75.963757 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.453033 | \n",
+ "
\n",
+ " \n",
+ " 5264 | \n",
+ " [111.9, 32.5] | \n",
+ " 11.445052 | \n",
+ " 31.472019 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.082841 | \n",
+ "
\n",
+ " \n",
+ " 9283 | \n",
+ " [111.6, 37.0] | \n",
+ " 9.696832 | \n",
+ " 46.594546 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.135449 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " location Distance ... ShotOneonOne xG\n",
+ "2961 [92.2, 58.9] 33.779300 ... 0 0.035840\n",
+ "10990 [115.2, 45.8] 8.019390 ... 1 0.340789\n",
+ "12649 [115.0, 41.0] 6.451010 ... 0 0.453033\n",
+ "5264 [111.9, 32.5] 11.445052 ... 0 0.082841\n",
+ "9283 [111.6, 37.0] 9.696832 ... 0 0.135449\n",
+ "\n",
+ "[5 rows x 10 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 101
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "q2BO-NLSijd5",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 419
+ },
+ "outputId": "241cbd08-910e-4ae5-f255-5038663cc0b3"
+ },
+ "source": [
+ "sortxg = X_test.sort_values(by = ['xG'],ascending=False)\n",
+ "sortxg"
+ ],
+ "execution_count": 102,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " location | \n",
+ " Distance | \n",
+ " Angle | \n",
+ " UnderPressure | \n",
+ " ShotType | \n",
+ " ShotBodyPart | \n",
+ " ShotTechnique | \n",
+ " ShotFirstTime | \n",
+ " ShotOneonOne | \n",
+ " xG | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 4624 | \n",
+ " [119.3, 41.4] | \n",
+ " 4.068882 | \n",
+ " 157.545469 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0.955584 | \n",
+ "
\n",
+ " \n",
+ " 3818 | \n",
+ " [119.1, 42.6] | \n",
+ " 4.162706 | \n",
+ " 139.499608 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0.927110 | \n",
+ "
\n",
+ " \n",
+ " 6952 | \n",
+ " [118.4, 39.4] | \n",
+ " 4.313989 | \n",
+ " 135.619868 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0.918449 | \n",
+ "
\n",
+ " \n",
+ " 8311 | \n",
+ " [119.2, 37.0] | \n",
+ " 4.163095 | \n",
+ " 134.820390 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0.902713 | \n",
+ "
\n",
+ " \n",
+ " 12822 | \n",
+ " [119.0, 43.0] | \n",
+ " 4.242641 | \n",
+ " 126.869898 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0.897920 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 3937 | \n",
+ " [69.2, 77.6] | \n",
+ " 63.283107 | \n",
+ " 5.832625 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.004453 | \n",
+ "
\n",
+ " \n",
+ " 2834 | \n",
+ " [81.1, 5.9] | \n",
+ " 51.817864 | \n",
+ " 6.672792 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.003497 | \n",
+ "
\n",
+ " \n",
+ " 6385 | \n",
+ " [57.2, 34.0] | \n",
+ " 63.211517 | \n",
+ " 7.223482 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.003241 | \n",
+ "
\n",
+ " \n",
+ " 11776 | \n",
+ " [62.0, 36.0] | \n",
+ " 58.274562 | \n",
+ " 7.853313 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.002498 | \n",
+ "
\n",
+ " \n",
+ " 6659 | \n",
+ " [51.9, 43.4] | \n",
+ " 68.301760 | \n",
+ " 6.706436 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.002257 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2592 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " location Distance ... ShotOneonOne xG\n",
+ "4624 [119.3, 41.4] 4.068882 ... 0 0.955584\n",
+ "3818 [119.1, 42.6] 4.162706 ... 0 0.927110\n",
+ "6952 [118.4, 39.4] 4.313989 ... 0 0.918449\n",
+ "8311 [119.2, 37.0] 4.163095 ... 1 0.902713\n",
+ "12822 [119.0, 43.0] 4.242641 ... 0 0.897920\n",
+ "... ... ... ... ... ...\n",
+ "3937 [69.2, 77.6] 63.283107 ... 0 0.004453\n",
+ "2834 [81.1, 5.9] 51.817864 ... 0 0.003497\n",
+ "6385 [57.2, 34.0] 63.211517 ... 0 0.003241\n",
+ "11776 [62.0, 36.0] 58.274562 ... 0 0.002498\n",
+ "6659 [51.9, 43.4] 68.301760 ... 0 0.002257\n",
+ "\n",
+ "[2592 rows x 10 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 102
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "lrUnxsmxpvPM",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 418
+ },
+ "outputId": "45ab7647-b57e-4eab-fa14-1cf8120e5851"
+ },
+ "source": [
+ "import StatsbombPitch as sb\n",
+ "sb.sb_pitch(\"#195905\",\"#faf0e6\",\"horizontal\",\"full\")\n",
+ "plt.gca().invert_yaxis()\n",
+ "for i in range(len(sortxg)):\n",
+ " xe = sortxg.iloc[i]['location'][0]\n",
+ " ye = sortxg.iloc[i]['location'][1]\n",
+ " \n",
+ " if sortxg.iloc[i]['xG'] >= 0.75:\n",
+ " g = plt.scatter(xe,ye,color=\"#ee3e32\",edgecolors=\"none\",zorder=10,alpha=1,s = 40 )\n",
+ " elif sortxg.iloc[i]['xG'] < 0.75 and sortxg.iloc[i]['xG'] >=0.5:\n",
+ " o = plt.scatter(xe,ye,color=\"#f68838\",edgecolors=\"none\",zorder=8,alpha=0.75,s = 30 )\n",
+ " elif sortxg.iloc[i]['xG'] < 0.5 and sortxg.iloc[i]['xG'] >=0.25:\n",
+ " a = plt.scatter(xe,ye,color=\"#fbb021\",edgecolors=\"none\",zorder=6,alpha=0.5,s = 20 ) \n",
+ " else:\n",
+ " b = plt.scatter(xe,ye,color=\"#1b8a5a\",edgecolors=\"none\",zorder=4,alpha=0.25,s = 10 ) \n",
+ "plt.axis('on')\n",
+ "plt.legend((g,o,a,b),('>=0.75','>=0.5','>=0.25','<0.25'),scatterpoints=1,loc=2,title = 'xG Value',fontsize='small', fancybox=True)\n",
+ "#plt.title('xG SGD model')\n",
+ "#plt.savefig('xgSGDmodel.png')\n",
+ "plt.show()"
+ ],
+ "execution_count": 92,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAGRCAYAAAA6rfQGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9d5xlVZX2/+wTb6rUgaYbEEyIjREjjhFQQAYYM5gVRH1HfyOOYxpHdAwDI4OorwllFAO0iCgmZARBR2ZUUJGXoKAINE1Dd1e+6cT9+2Otffe5FbpyV3XX+n4+TVXde+4++5xbzX16hWcprTUEQRAEQRCElYmz3BsQBEEQBEEQpkfEmiAIgiAIwgpGxJogCIIgCMIKRsSaIAiCIAjCCkbEmiAIgiAIwgpGxJogCIIgCMIKxtujJys72qnsyTMKgiAIgiCsLJIhvUtrvX62xy9IrCmljgPwKQAugC9rrc/e3fFOBVh37B7Vh4IgCIIgCCuK7Zck98zl+HmnQZVSLoDPAjgewGYApyqlNs93PUEQBEEQBGEyC6lZeyqAP2ut79JaxwC2ADh5cbYlCIIgCIIgAAtLgx4AYGvh5/sAPG0uC/zlM3fh/sFxjDWbC9jG3oZGM9mJDK3l3oggrDoOWX8IAODunXcv6z4EQVg9XHHDFbjkl5csaI0lLyBTSp0B4AwAcCc0F9w/OI7e/gGs37QBSqml3sqKIIpi3Htvjnpy33JvRRBWHZVQOpwEQdhzbD6QqsOWU6xtA3BQ4ecD+bEutNYXALgAAIK1TtfU+LFmE+s3bcBfd/x1AdvYu9Aa2DU2iNd/4ZTl3oogrDq2nLkFAHDKJ+XvnyAIS4/5f85CWUjN2g0AHqmUeqhSKgBwCoDvz3WR1RJRMyi1+q5ZEARBEIT5M2+xprVOAbwNwFUAbgdwqdb61sXa2Gy456/34u2nvwN/+7yTcepJr8bpr3wzfvub33Ud02q18ZwnHY36eL3r8Xe8+R9x1Q//a9q1j3zss5Zkz4IgCIIgCHNhQRMMtNY/1lofqrV+uNb6Y4u1qdkQRRHefvo78JJTXoQfXnsFLvn+N/Des/4J993bnYktl0s48llPx8/+67rOY+Pjddz025vw7KOfvSe3LAiCIAiCMGdW/LipW26+FS974SmIogitZgsvPu7l+POf/owfX3ElHvfEx+K5xzync+wjHvUInPzSEyetcfyJx3ZF0X521bU48llHQuc5znj1W3HKSa/CS49/Ba796XWTXnvDr27E209/R+fnf/vQObjish8AAG77f7fjtFPPwKknvRpvff3bsHPHrkW8ckEQBEEQhD08bmo+POZxh+M5Rz8bn/2Pz6MdRTjh5OPxiEc9At+77Pt49OGHzWqNZzzrSHz4fR/FyPAI+gf6cdUP/wunvPblCMIA533+E6j11DA8NILXvuT1eO4xz5lVTVmSpDj7w5/A+V/8D6xZO4Crfvhf+L//8Vl8+JyzFnrJgiAIgiAIHVa8WAOAN7/9TXjVi16LIAzwng++a8pjznzLu3Dv3ffi4IcejPM+/4mu5/zAx3OOfjauvvIaHH3c0fjjbX+iyJoGPvMfn8XvfvN7KMfBjgd3YnDXINatXzfjnu6562785c6/4C2v+3sAQJ5lWLffzK8TBEEQBEGYC3uFWBsZGUWz2USapoijGOVKGQ9/5MPw29/8vnPMJ79wLm69+Tacd/b5U65x/InH4oL/+2VoaDz3mOfA9z1ccdkPMDw4gouv+AZ838Pxzz4RURR3vc7zPOR53vk55uc1gIc/8mH42mVfWfwLFgRBEARBYFZ8zRoAfPQDH8P/OfOtOP6k43D+v38aAHD8ScfhD7/9A667+ued49rt9rRrPPnpT8K992zFt77+bRx/4rEAgPp4HWvWDsD3Pdzwvzdi+7btk163cdP+uOvPf0UcxRgbG8ev/+cGAMAhDz0Yw4PD+MPvbgZAadE/3/GXRbtmQRAEQRAEYC+IrP3g8h/C8zy88KTjkGUZXveyN+I3/3MDnvqMp+DTXz4f537sPHzio+dh7bo1qFQreNPfnzblOo7j4JjjjsZPf/xTPOlpRwAAXnjy8fiHM87ES49/BTY/djMe+vBDJr1u/0374wUvPAYvOf4VOOCgTThs86MAUGr1E589B//+r+eiPl5HmmV41etPxSMOffiS3QtBEARBEFYfSms981GLRLDW0euOtfrwR+/+XzzikQ/DXQ/etcf2sBLYsW0nXvf5k5Z7G4Kw6pAJBoIg7Emm+3/O9kuS32qtnzzbdfaKNKggCIIgCMJqRcSaIAiCIAjCCkbEmiAIgiAIwgpGxJogCIIgCMIKRsSaIAiCIAjCCmbFW3esBM4/59P4w+9uxqYDN+JDZ58F37e37WdXXYtvXnQJAGDbvdvwmtNejVe94VSceNSLsN/+6wEAp/+fN+LIZz59WfYuCIIgCMLezcoXa1qjdMttCO+4E+n6dWg+7SnQYTivpZIkBbSGH/izfs2fbr8DOx7cia9868v40mcvxNVXXo3jTzqu8/xRxz4PRx37PADA6a98M573gucCAHp6arjw4gvmtU9BEARBEATDik+Drv3ihdjvvE+h74c/xtqvfA37f/Bf4YyOzmut+ngdb3r1W3Dux86b9bSBP/zuZhz5zKcBAP7m2c/ATb/7w5TH7dq5C3GcYNMBGwEAzWYTp516Bt77jn/G6Mj89isIwmpEAe7s/0EpCMK+z4qOrIW33Y7qr3/T9Zi/Yyd6f/QTjLzyFXNeb2BNP7566YW46bd/wMVf3YLt92/HMccdjec9/7n4p7e/Z9Lx53zq4xgbHesMdq/11DA6Mjbl2tdcdS2OOe6ozs9fvfRC9A/04weX/xCfP/+LeO+H3j3n/QqCsNpQQGUAcFwgjYD21P+/EQRhdbGyxdqdU0e/wjv/vKB1n/Ckx6NUCvGtb1yGyy7+Do457qhpU5Y9vT1o1OsAKDLX19875XFXX3kNPvzvZ3V+7h/oBwAcc/wx+O6lVyxov4IgrBIch4QaINE1QRA6rGixlu63fk6Pz0Qcxbj04stw3U9/jocf+jC84tUvxWGHH4ahwWGc9sozJh1/zqc+jscf8Th848Jv4sQX/y3+57//F0844vGTjhvcNYg4jjsp0CROoLVGEAb4/Q2/x0EHHziv/QqCsMrIMyBuAl5AXwVBELDCxVrzyUcg/uGPEdy/vfNY7vsYO/7Yea3XarWwZu0afPYrn0ZYaFJYs3Zg2sjauvXrsGbdWrzhFadj/03743WnvwYA8JF//hj+5WP/DGByCnRsbAxve+M/oFwpww98fPjsD85rv4IgrELiBv0RBEFgVrRYg+9jx3vfhZ6f/BQl7gYdO/b5SA5+yLyW6+vvwwsLnZyz5Z3v+4dJjxmhBgAvf9VLu55bu24tLvn+N+a+QUEQBEEQhAmsbLEGIO/pwejLXgzppxQEQRAEYTWy4q07BEEQBEEQVjMi1gRBEARBEFYwItYEQRAEQRBWMCLWBEEQBEEQVjArvsFgJbC7Qe43/OpGfOAfz8KBBx8A13FxwTc+v4w7FQRBEIQ9jF8B/BKQtsUfcIlYVZG1JEmRxMmcXlMc5H7Iww7B1VdePemYY094Pi68+AIRaoIgCMLqI6zS5I2gCkAt9272SVa8WHPiJtbcdiU2/fIL2O9330Iwum3eay3VIPerr/oZ3vCK0/HNr1wy770JgiAIwl5JlhS+6mXdyr7Kik+Drrn9KpSG7wUABGMPYP3NV2D709+A3C/Pea2lGOR++GM344qffgcA8I43/yOe+OQnYPNjHz3nvQmCIAjCXklrBHA8IE+Xeyf7LCtarKk07gi1zmNZgtLQPWhuOGze6y7mIPdKtdL5/tlHPwt3/PEOEWuCIAjC6kKE2pKyosWadlzkXgAnjbsez4LKNK/YPUsxyL0+XketpwYA+P2NN+Flr3zJvPYmCIIgCIIwFStarMFxMXbw09D/l//uPBT1H4io/6B5LbcUg9z/68dX4ztbLofrenjCkx6PJz31iHntTRAEQRAAAF5IacWkBeh8uXcjrABWtlgDUD/oCMQ9G1AavhdppR/N9YcCan7dJksxyP3Fr/g7vPgVfzev/QiCIAhCF44HlLjcxvWAlkzGFvYCsQYAcf8BiPsPWO5tCIIgCMISI92UwmT2CrEmCIIgCKuCPKNomstpUEGAiDVBEARBWFlkMf0RBGZGU1yl1H8qpXYopW4pPLZGKfVTpdSd/HVgabcpCIIgCIKwOpnNBIOvAphYlf9eANdorR8J4Br+WRAEQRAEQVhkZkyDaq1/oZQ6ZMLDJwN4Ln9/EYDrAEweAbCPsLtB7j+/5hf40mcvhOd5ePRjHo33fPBdAIBnPO7ZePRjyLj3vWe9G4981COWZe+CIAiCIOzdzHc26Aat9Xb+/gEAGxZpP0vKUgxyP/TRh+Krl16Ir156IYYHh3DrzbcBAA556MG48OILcOHFF4hQEwRBEARh3ix4kLvWWmM3vcZKqTOUUjcqpW7M2/NrSVZ5Aj/eCSdrzHebAJZmkPvGTfvD8yjS5vk+HIdu6dZ778MbT3kTPvYv/4Yoiha0b0EQBEEQVi/z7QZ9UCm1UWu9XSm1EcCO6Q7UWl8A4AIACNY6c1ZrTtZE//C1cLMGAAejfUciLs3Pc20pBrkbbrn5VgwPDndSnz/42XfRP9CPL37mS/jW17+N157+6nntWRAEQRCE1c18xdr3AbwOwNn89YpF29EEyq2/sFADgBzVxi3zFmuGxRzkDgAPbn8Qn/jIf+CTnz+381j/QD8A4JjjjsZXvvDVBe1XEARBEITVy4xiTSl1CaiZYJ1S6j4AZ4FE2qVKqdMA3APg5Uu1QT0pUzv/zO1SDHJv1Bt4zz+8H//y0fdjzbo1AIBWs4UgDOC6Ln5/w+9x0CHzm2UqCIIgCIIwm27QU6d56uhF3suUtCqPQBjdBy8dhVY+6j2Pm/9aSzDI/ZtfuQTb7rsf//bhfwcAvPUf3oxaTw0feu+/olKpoLevBx8591/nvWdBEARBEFY3K36CgXZCDK85Bm7WQO6UoJ1g3mstxSD3M95+Os54++mTnt/y/W/OfYOCIAiCIAgTWPFiDQCgXGTe5FoxQRAEQRCEfZ0FW3cIgiAIgiAIS8feEVkTBEEQhL0J5QClPvq+PQrofHn3I+zVSGRNEARBEBYbvwy4Hv3xy8u9G2EvRyJrgiAIgrDYZAk6w32yuY05FISJiFhjZFi7IAiCsGhkMdAYou8lBSoskFWfBk3iRIa1C4IgCIuPzkWoCYvCqhVrf77jLzj3Y+fhTa9+C35+9S9kWLsgCIIgCCuSvUKspXmGXa1xNJN4QeskSYrvbPku3vr6t+Hir27B848/Bl+99EI4roNqrQZg7sPa/3PLl7Buv3X41te/vaC9CYIgCIIgTMVeIdbuGRvE/fUR3DWyA0mWznudZqOByy7+DvbfuD9e/qqX4PFH0OiquQxr/8gnPtR5rDis/Y7b75j3vgRBEARBEKZjrxBrSZ4BAHJoZFrPe52+/j5c8v1v4BWvfim+++0rcPor34xvfOVibH7Mo/Hr638DAHMa1p5ltC8Z1i4IgiAIwlKxV3SDPqRnDXa2xlHzSyh5/oLXO+zww/C+ww9DFEW45qpr8ZBDDpJh7YIgCIIgrEj2CrFW8UMc7IeLvm4Yhp3B7jKsXRAEQRCElchekQYVBEEQBEFYrYhYEwRBEARBWMGIWBMEQRCE1YbrA26w3LsQZsmy16zpBXR37o1ovfquWRAEQVhBeCFQYouq9jiQtpd3P8KMLGtkLdMRRkfHsKq0Sw6MNIeXexeCIAjCasVxp/5eWLEsa2Stme7AgzuAwfFROEot51b2GFmeY8v1/7nc2xAEQRBWK3ELUC6gAMTN5d6NMAuWOQ2ao5k+gDd84ZTl3YYgCIIgrBo0EI1P/ZTrA0EFyJK9Q8gpBTg+7Rf7bppu2WvWBEEQBEFYIYQ9lBp1AyCNgXz+Ix73COUB2m+WAK2R5d7NkiHdoIIgCIIgEEac6RzQ2fLuZSaUsjV3zr4de9q3r04QBEEQhNnTHgO8AMhSLEv3n1IAFInFmdAaiOrU3Zq0lnxry4mINUEQBEEQLGm8POct95OlSNIG2iOz20fS2ueFGiBpUEEQBEEQlhuvBIQ1ipL5ZTHsnYBE1gRBEARBWF50Tk0CbgDkCUXXFoJSQKkPUA6ldld6o8QMiFgTBEEQBGF5yWKgOUQdnWm08PW8EtmQABSpm86qZC9BxJogCMJqRHEVzGwKuYW5oRxQkfwSdlMaMZI0gXyFd23OlixZ3LW0pghbtkw1eIuIiDVBEITVhusD5T4AilJEixHJ2JeZi1Gs41GhvFKLP3dTOVTXpRxKFyoHqPQDjSEgbizeeQxeCPglIIn2vvmheUqRuqUWzXuIZRVrh6w/BJWwgi1nblnObexzXHHDFbjkl5cs9zYEQVipOD5o1hBIiIhY2z1hjUTYdEaxXlioufLZfgJ8bxdR5AQVOpdStLYbUPQoqFD0aIGRqVOfeSpOfsrJ9gHX/J5osvKYckJAwessz6Y5ZvWy+cDNaEYLnwQh3aD7GJsP3Nz9l00QBGEiaZs+2PN0VdgeLBiTZtR6cto4rJHdRLmfBF3n3maLf2+L+2gMU+QubtLP+cLT2Sc/5WRsPnAz/6RYoHroCLapUI7944ikWCqWNbJ29867AQCnfFJmgy4WEqUUBGFGdL5Pj+ZZdNpjFNHK0sliTRUEiuMCadp9b5XT/ZqJP0+JovSm4wLtuo3OJS0bvcoSqlfzQo70LU5E67b7bqPP5KAC9G4isRY3gOGtU7/ADYByLySlPjWL9ZksNWuCIAiCMBPTiZCoTl/zjASU49k0abnPpk7bo4BfAcIqibXm8PSizfPt+CS/1J1KnVgsn0YU3TPeZO0xIK7PPH1AuRQwm645IY0BaLqWdDe2F1lM12Luwd6I4634FK6INUEQBEGYLzongaRcoLKG6sniBhC3rLGrN+GrckggTNelmHIa1XFm5zfmhdZM1ogOIyKnwg24wQQkIqeaFJCnwMhW6jqdKZ27t4o0gFLYXkjX0Bxa7t1Mi4g1QRAEQVgortfdWIAmiZyi2ElalNrMsxnsJPTchEPcJAGWJdT5OFP9mvEfA7jZZDrRGC/f6Kk9hbkXjjvLFPXyMKNYU0odBOBrADaAYoQXaK0/pZRaA+BbAA4BcDeAl2uth5duq4IgCIKwQkkj+uO41t4jqndHuMwx8yGssY1Ge3LUzMzHdAMSjFMJLOVQ5C1L+FjfvnZfxXFJLO+uUzZqUH1eGq1YoQbMrhs0BfCPWuvNAJ4O4O+VUpsBvBfANVrrRwK4hn8WBEEQhNVJe4zqt2ZroeH6QNhj06O7wy8DUPzVULDNAEiUeCFQW0fpvSKlXhIlphmgNUJ/VrBAWTClPrrmEnsKTkXapijmYvnUFd+PRWRGsaa13q61/h1/Pw7gdgAHADgZwEV82EUA/m5JdigIgiAI+yKlXqDUA/RupAhQkaBKIsN8+KcxCQ+HrTSUAqprqE4uqNrXeWH3V4C938zH/TSiZanxuE5u4nUuJWqKa3VcFq7Vyc8tlLCH3o/KmkVfek41a0qpQwA8EcCvAWzQWm/npx4ApUkFQRAEYR9F0Qe9YpuKhUaltCbR4IVArwMM30NrugEJMwBQNaA1aj3xtAYCTmcaAeYGADgylLRtuhSg9YMK7T1pAVk0d0d/5bDBL3eIzhUvBPo2kfWJ2wbq0fzWmSutEZsGNecLajaSmSWLO4rKrOu4tjZxsZae7YFKqRqA7wB4h9Z6TBUUq9ZaK6WmvPNKqTMAnAEAbmVhmxUEQRCEZcMv2Q/koLL7jsvZ0Bqh6JlSJMD6NtLoqI64UPYDP8+sHYexCUkjng9aSOFF491DyzvNBJqOnyhOTCpW55jW/LYyQIItT61Nx1wIa7S2b5otFkmomSjddFMi8mxyerMjVKcwOF4ocYPEcRoveofsrMSaUsoHCbVvaq0v54cfVEpt1FpvV0ptBLBjqtdqrS8AcAEABGudlWtiIgiC4JfZemHh42GEfZCO+azi8UsLROfA+Haguo7EmgZ92DdaQHPEdigGVfqdbOV0nImotcdmPkdUJ7E0XQeqX+ZUq0u/+xP92ZSy51OFeizl8AxUh/Yx1dpKAeUBEoMpR9OyuNuLbr74ZRaBACI1+0aJqG4nTCx0DxNJ2rOzWpkHM9asKQqhXQjgdq31eYWnvg/gdfz96wBcsfjbEwRB2EN4Jfqff1BdmnoWYe8nSyhqYqJai0HSBsa2k7daUCFDXIAiQI7Lv5NspmvmgYa13dd+OYU4TM4TFYrRtiKmc1TrqY10teaB9HG3OHQDFpMcMeuc27U1cuaYuEHRrzShlGi5v/scSnXvGaDjSr3dNiPdL+p+/VxIo8UXakvMbCJrfwPgNQD+n1LqJn7s/QDOBnCpUuo0APcAePnSbFEQBEEQVgB+2Rbuh9WFp0ENWpOgUQ5FfJQD9B0A+CFND0jm0KlY7ieBkyWzGymWtoFGzEJtmuRX2p6casxiigwqZYWrV6JOVK9E4rA5ZM19TYQPTvd5lDPBTLgJqg3soa9uADR2Td5T0rQibRVEwmcUa1rrX2L69pGjF3c7giAIy0TaBtqgD4B92XtKmD/FGqdFGJzetW7aBtyQRIhfsdEqxyEvsKRZ2IOevk7LRKImRaS4OcJxKFJWjCzNtnbL9W1KtT0GNAa7n/d8G21zfUB5JKTyDMg59egF3T5wk8yEQdenNUUUFQu9tE3XUO7l1Ov4zHYbfpn+pNHiWXMsEzLBQBAEwTDdB6AgAPSh3xrtjiYtFu1xAJyqdFwSNI5LBf1JIXI01T8k/DKl7rOYRIlX6q6dKveTAFSgiFtQIRFV7ieh1hrltCsLJy+k6/NL6HSRAtY6xPHsMQaTxjSdo+0xHoPlk/BqDvGcUbBg0yR4HY9TsHl3hKw1bueihlX66oV2hFdQmblmL6hy80aFO2l3I0pNajmdwnR4BSBiTRAEQRBmy2JaPUxHngGj91FB/2zOF1SsyGo2WKhxqtENSDzpnMSL45Fgq62jwv8sJoGSpbaRwBjwhj30s2m6yRJaT+vJDRblfhZ7DlDfaVOk5vVmlFO5n+vc2H7EpJVbY93Rvjym+aqOa02G84TOrdTsjIdz3m+ezhw9NGbDflnEmiAIgiDsE3glEhpJa2kEXJ4BmKX9QxrxEPeUB8r3klZrj9r0Y1gC4FjBpbh2zGH/NJ1ZIZRGE4r2C7VhKdeqTSV+dGYtK9KI7k1Q5e7LlO5ZUKU9TYxMTtUk0Bxmv7KUBKcZtq4Klia7ozXKnadcBxjWaN9TibE0pojfnhDj80DEmiAIgiDMCUWRKTfgbs77F3d5L5ybtURUJyGlcyDstdEk02gQ1ak2zPFp7agOxHWKjiVte548QVfaE4p0WjE9Od2e2qMkGOMmrWn8zIqpylKNxJDrA60dVtwZ37iJBGWq41M8VquTTt2NUHN9FoQpXafZb1CzUbwsnVzy0B7duwe5C4IgCMJeTVAhIZG0F6fQXIE++JVDHZuLRdhDI5m0pkkDTZ7dWTJF9WO7F3Dlfu6sdEl41bmL0kTC4jrVibVGeJ2par40ncsLSVhNeT7Fo6O4IaI9TmKr1Mt1Zf7Unah5DiDtts6Y7v0w/nKArbEzFh+7i36FNTrG9dkEmEVgcWrDdIJshQo1QMSaIAiCsK8z8UN/oQ76WlOKzQsWr3PYcamg3vG4Tiumzk3l2y5Jvzy9X5oRSY7DKcimFR86I+EXVGwka3eUB7ioPwbqD072Xyv1kih0uMYt5uJ9U/NWHGau+Loy9nsz0b6Z0DnbfrgcIctJ4E01gcENKFKWZ3Qex7OvN8RNrl3Tszv/CkPEmiAIgrBvY4REltgaKIMpfp/reKDGIKUWF+uD34iopEX7MfVhpltSqakjSo5LQibj4nvTCNBmUeeXKWLnuIW6NAedOrRoHN2+Zy7Qs56O9djjTKf2XBpcP5YCTsgiKqM1onESjXFBwJYHgAqP1BrZNjdx2xq2DRGATYfmma1FM+O6/BK9J9G4FW4TI2XpbOvR1OTfk2VGxJogCIKw71Lu41okFjyVAYo8tcfoA7k8QI9H9TlGyWaK0KhCFGmWkbzmUPcAcFN71hziU+YkoJRHkbOgClTX0v5H7+8+zuCXyGDW2HlEY5QqDDnaOO4AbU5ZKseKFOUBcWFYvRF9YY3uUxqROCqmMc24paBC9WZxE3Bd28xgGjJctvOYSQwVo2DKsTNK4QCYEDkrRv8WJKD5d8Rx2XtxmkjmHkbEmiAIgrCXweaocEh8zFRwDnDKjkWb8epyioasi5DS9ALb/ej6NvpjRNRuXxuyOOHojxFYpqje1K71bKDn04gie27AEaZeEk/KodeZCQNpAnhlun7HYbEU2rmaxZSlETztOoktL6A6uNYoX49r55Wmhfo/N7BdpI5n086hQ3syAjRukHg0liCt0dl3X5oRVgALwQat2x6jcy6WR6Lj2Htifk9WACLWBEEQhL0Lv2Q/SP3K9HVcALn/Gxd7pbpFWRqTWFBut/HsfAlqLGg8+tDPc/7gV9htdK04lLw9ZkUPYNO0XkARn7Bm06PtcSDso2YCv8wTBnqsOGoOUzozjYCgBCBnN/+mXb81XNgIR7uMEDTRtCzm2aXcKVps1PBCGkSvFAmzNLJRTNPROlrolvUKDRmOO2t3EqRRwSh4BAgr9N6mEeA71Ok611T2VOQZXZ/rr6gxViLWBEEQhL2LTmpxFuaoSWs3ETNuFNgdyqG03lR2D1Pty3EpotWs82zPCDOmQU3ECGARFVFatsujjFOIcYOjVE2KpqURnS9LSbiaon+HfcXM2KqkRYILoOPrD05zS7iQ39h8OB691svZHy0lEQiQmKv00/0BaL9JiyKBrjd1jVjctAI2mcMUiKBCdik6B+K2jV4GNYq0AUBb2wkN2RRebrNld+J/mRCxJgiCIOxd5CnQmIM56kIo9VA0zgfQTHdfZxWNW3GWJUA6Q1o1rHG9HA9xL/UCAXge5ni3/UXcoihXaxQY3wmUe0icuSxaAdeJQ8sAACAASURBVI4+tXhsUkxCyvHpsZznj+Y5pUF1Rq83KcWkxUKRi/WTpm0k8IKC8OFzeZxKVS4Ah4ScEcU6n76YX+cUuSr1AtU1FNkz72FYo3Plua2L67pXDt+nGo/90pPNe0u9tG+/TKJy4vulXKrXM2nZ+aIcXiffI3NHRawJgiAIex86X7ADx+zOA4oS5TxAfXc4HnuiTdGwYGZmGgHil+yII615gDtHwbwAmBgUCsrWKywocYRpnIRZg+eHhjwLsz3OxrA54CqasxmN0R561vMw9tymWIvpU83Xkad0vY4LaJdMY92gMEPUtdfjevS6oDI74WJSoWbge57Rdfhl6u7MElqzHtt7HtUpiuaX6Ppcn3zkTG2e1jxeqqfwxk3xfhlBCNB55juxIKjSngHa/xLPFRaxJgiCIAjToTVHj/Rkv7GJdDUs+FasKcVmtYoiTu1RFn/mHNzZmEbdtVJKcbNA0m3qagagKx70Ho+T0DEiKKhwF6fmNHCDO0lDGz1z+JoMfpmvM6f9QRX8ylLatxuQYArZ+iOoUvrVjJIq99uauyJdJruZ7QjNc3tsxxMutxYj0FZI6gwY/CtF40zaWLOgjDkyWVmDTuSvNTJ11LVzHxVF6DQoijnXDtJix61e4uguRKwJgiAIwvQYk1mAC+J343KftoE0INFTLE73Qju4PKzycREJClVYP2lzyrVEj5mUXqcjdJQDRjng9diRUsCEIeiFMVI6t0Ikadu5mHGLonGK/dfCGouknPZeWUM/Ky7oh2Ixx/fBnBea9pRnbORb6C41lPusX1xjkNPYg933uG8j4NfIRqQxaCNefoXXdDniWCcxmsbdYkw5LJR5yLypHzSdseYeRHV+zqN1FJ8jm6F2MajY87bHuHZwwv1dQkSsCYIgCMJ0RHUSWEYA7BZlGwA6Dzm207PcRx/0pT6KXk2MQPklTk2yJYfp8EzbtHanDkxZd/88Q6fRojnM5rm8z0kF9poE4lSjoIwxsNm7UiSuNKckSz183pSNe12KpKXs3eaweIsn1OkpxfVtPZyqzMl7rehhFvTQtfoBgB6+N207ycEL2NYktd2tE8lT9nXzbBNDuZ899sosDrW9LyrlaOI0ZsMTCao2QmhmiM63gWEeiFgTBEEQVi/KJc+2PCNhNtH1Pk9n7hgFuk1bo0bBCkR1+4B1zfoc7a5rSyMrTBQ4FahsarCDJmFW6mHrjDVTF9PPBRMpMrTHOMLH6U+TXkzads/ReKHJY4pmCuXSPSmvob2aLtPmLk7Zjttzm7ozs3Z5wHaUGp85k5J2nKmFc9zgc/bbWrzpBLbOgOagbVow4nQqHI/uhVei+7IMM0RFrAmCIAirE8cDevazlhNaz9+2oWja6vmA0Qi9G2j9NAZGt3Ehf9OOc5oo1kxRvevTMUmTBNIktD2fmTwwMUXreLbeqz3GItGla5xJ2GVJYQg617t5IaUMdUbXM1OTh19is1+uLcszeu1ED7M8BXbcQWsrUPQt7KWGAc8H2pm9nko/yPbDdK+iW0C5nr0vCaebs0KjQtct1FS3ZoyFpzMvdj271mLNgp0jItYEQRCE1Ynj2miKmZ05X4woKNarFd38Xe6wbI0AyCfXtXXg/WQJRfQcZxqxBq45q9G6OVtxZLEVYkGVzgvuUi02ILTHZr4mxyWbj4zr6yoDtJ+gBqRD3dMSJoo/x6PomF+i1Gi7wQ0WLRv18oJui4+kSeuVelh0aa6XK6xpInxBtXsUlulCLRodT2wc8MuT05dG8AVVut64ObmjNY1oX8qZnObdQ4hYEwRBEFYnaQTEXHAeNxc+xWBiujRPKSUalGiEE4DdGvGaWqji68N+Ekftscm1VWlMoglgIeUBumLrs/IEAKdV08iOhcomeo85U6f2TM2X6uFoVw/dL1PX1mkcqFBK0QhfLwRq67krlbs1TdQq5Po0cEpTKRJ1jkM1bKUeOm8WA60xSh8HNaBUtec1UT9jxpsXU53T3N+gao8vdqxGde6kLdG19G4k77diN6nWU9f57UFErAmCIAj7Do5rLSVmI77a4+jUTi0FSQuAJtFhivLLvXTexi4AihoYwl6OTrGhrCmWN92Vftn6g5mOTi/kurKEhY8DILPTreJmIV3JXYumkaAzGzSggv8po3cFA9ykVThvYK1IOofxSR2Xu1g9AA6QTZghWhmgWaWNQdp7bT2QZUAeW+855QCaU51hje1Cata7Tjk0zSCJgMZObrbg9Kfp0ARsU0Bcn2yeC9BrstgaGZf6uAPWoYhiLuOmBEEQhOVEKTtQOxq3UZGwRh9iUX1hBevLRcg1SF5IEZc9YKswLcohAWKGx5cURW7KPUB1LU8P4M7FkOvaXJ8aDxyXIkRBzh2lnBpMmugIvPKAjQpCkehqjXQXyhffQyPagooVRW5AQtIIwSLtUeuP5pVYCGk70D1qcLF/XPBJ4//ETcCJadKEiWKZVKwf0vV7fO7ABxo76BpMQ0XWtjVxxS7VtA30HWBTqY2ddC3VdbR2NE5muZUBqkeLWSxHDe5uZeEc1mxatDlE9zqJWMRqSv2uIESsCYIgrEb8iq1hMqN3jF0EQB9ay5z6mReqUFQ/XcH4nsIN+I9PUTSdd4I6cHyK3nRmbnLdl6mbM8KqMUjiqhJy00EJyDWJQBN1c3061oxZmqkezUwvcDmypFlcmbQkYJsWjNDUOTdfsMjPC5FLj8VxGtH+W6NsCtyeYB6b23NkLR4uD4p8tevoNFYUo3gRp12LVidxk6OnEV1L4NNeFXfehlXak+MDvmka0d21aMYnTjkcYUvY/25pJxHMFxFrgiAIq5GJJqoAd+vxvMW9MaoGWB8uY+iqQLVVSpGImM11uT5FgXROr5mvVYOJhCUgMZY0gZ13UQrPYz+wLGFhMkLHOD5FhIpDzvPUDmyPxtmrjIvt4xYJuv5N9N4FZepwjZtW8HTgVGXaBlQ/e5clJGq9gKNrCujdn87neFaEASSEjUAzw9i90FqImD2aGi+doyuV6rjkydbmVG9zhK7XcWmNJOKZn6rQBKAnp7PHH6TjMzPBoMn7L9M1m58jtgKZqpEjatA/SLIJ0dfFeu8XGRFrgiAIq5E0Im8uwAoYndFjxox0b8TMezRjkooRKL80hYCZApMiVA7ba7BB62zmgxaJmwUbCe4iTJvAyL30fbmP03IFa4mAC91LPTQfNIlY2EwwvO1cI0fimsPWfFZ5QGUtd6jy8UGF54Wm7MmWkS1GUCGxVuy0dDxAmfNENvqWtEhclfvp3CYi5VfYY05R2jNpkuB0WMilbdtFadK2JsrllUhcms7Z1iiPu9oNJmJpzptxuhXD3ffDdKuGPfy+F967LJ468uqXCu99uHurDuXQmjONIVsERKwJgiCsVqaKMumMCr73VuKGjawZIeRzF+BsHeeL5rRZYuubchazE2dqugEJlIn1cTqfPiXpldhsFkCYF0Skss87HuBHUxveTjxXe4zNd1OgZy1FnUq9dqyTGTrueHbmp0k5+mUb5VMKGNtBthlBlcUVCyulaCxUqY8aJNLI1rHliZ1ZWllDtWyOR2LTC9komIVPMdJlhtcHVYrGmVq2uEXnS1qT/+EQVkmMej4Ah44xA+DjJlDfQW9RWKP1XI+sQxoPdluFTEUaU7OH49kJC1NhLEa0pu7RnP3jjH3KIvuxiVgTBEEQ9i0mpng7cyhnGQFJI6AR24iJEVWmsN6s77iFrkqX04mhnSE50a/LC+lDPShTys5xbOrZEI3TY6ZmzA1InJhB77tLy+Up0B6msU1mryYKliVsztum8/plW+dlzm8sMPLY1tqZKGM0TgLFC3lwO5sAl/vJO62V0e1tDgE9+3MnK0uMhEWdiXpOxA1IXPtlOrfWZH5rBr43dtlj/RKJ0FIv4CjbfOCwyA1rVAMXVEh0mfRungPuJtpfm2vYpiIr7DOoTF/DZhoylOKh9BkbHrvWP24RB7yLWBMEQRD2ceaRpioKqLhQ3zSpu5Jr/MwHc1gjEROw633xcTPr06Qv84xEUNE2w/iS+WXb2RpUueaO53qaSQTGS22ir5jWNgVoRjR5PomJxLddwGZ0VNouWGZw92l1HY2xMhGjLCGxmMaAy/VcxaHto9utkIx4WkJjiNbWsB5nxn7D8XjuacRp0oY9Vil7T/wSRccifj7PycrD9ej6W0O0phvweKoIna7SPAGcwlxXxyerEL8MjO+wvxdeaM/pBTYquLtmg7hpI5QmYqtzAK5tDllERKwJgiAIqwjFZq3Z9JMBJpJGU6dQNc/oNDMsARIFXjj5A9tEmUzUDGAj3mn2kBdGRDkszFyP9u64JFjyBEjVhEkAiiJ3bmDrzJSyxq9BjdOqiZ17GvZwbR9PWfBCKyzdkPZRXUep3rH72c8spzSg4uH15X4Sle1ximQ2h+gxxyOrDpMu9UISoeU1fA/ZYy1NrADKYp7IYAbbO1bsBRVK07dGAeTA8FYrqkzkMk+tHcr4Trp3aQJU+jiayPVoaZsbJHrpPMVh7VAAdjNfNE8n17y1Rm0Ubz7/QNgNItYEQRCE1UNYs3VSeb7wRgqdAWkh3dUe47QYdyoC5IfmBbbL0dijdIrsAxJSSdvuJxon8VDfReuFPRwhK9G6ZsSTzrsnEtT2o5qxqAUkowUnfgX4VTq/UiS8TLdjl2EsrDiJWyS0wipZa5i0b1ijFGMa8TD6NvnHKRaOOgf6D4CdJqBI9CnYaFSlF4BDAm7kPk47VlkwARjZRuf3TIOIojW9kN63hLtJi9GvLAVCFnOmVjCoAm6J/eBS23RhUr6Kxbsb0OtirlMz71/x3pgIZ9TA1GLM+OmVeFzY4lnfiFgTBEEQhN1hBn3PtgapGIlxXGuz4YY2BQlQLVfc4MiOQ2Jg7AFQejPt7oosigYzTgpmTJTm6FiFGgDcACi7wNg2u5f6g3aNLGYhxqIxqnd3luqcOlYra4E2dzy6LpArOkd5gFOHPB0A3IjhBfR13cNYXCrqTG0MUlQrS2jbSZsjimbUAtuJlPutiXBQJcHaHKJ7WBngeaIhCcDm4OT0b6lG+/NDoDFM9y+okIBTPWwnAor+mWtN2vzeRvb75ghH/DIbsfTLNrpn7tlUGO9C17cR1EVAxJogCIKweojq9oN4NlE1kyLUmoTDVLVIpsPSjC0qYhoDygN0XhMlctmqwvNt56LjUGSsvmPyOkmL9tFlNMuCwyvRc6aoP0vYWsOxDQR5BoxtJ9GRxew959K+WkM0h1Mpeqxnfyrqb+wkAQUAdRY6tXW8viah1hikc41u4ykHCRD2kbhTLg9+55owsHip7yAxGlTp+LjJ3ZPKpmLzgjB2fDqfmelZH7SpV4Ae1zlPMlhLa5a4uaC6ntO5Hj3eHCZR1yiktZvDVriaxozWKE9uCCh1jIJYzndTj5Y0uSN0hmaQOSJiTRAEYTUTsqFp0pzaPHSfQ8/tOk0RvVLsP8eRIIPpiFQKSIMprDoUPZZntktUZ1xTlnKnZZMK3102pc3YHLbcbwecR/XJ0ZxyHwkZU/eWxcDQXykKlXBHp1eyDQRZalOveU7pzaAMOOs5CqTofGGVhEZ9Z6GTlmmwUDJmtmZkkxkdlacUleMaf7TGKbXY5vmceUaCqjJAr20O247NpAnUU3qhqRE0jRlQdrC7EXqlXtu12hqxHbTKAbzE1r7pDIhSHquWT7ZBiRu2iaQo2jKQUAsqdB+jMXpfdmcBEy/N3yMRa4IgCKsVM7sSoA+kVSHWYAd1uy5d81QREC+0PmSALbwv95MIMCk45RRGNLnda5hZmGmbBFeW2KieG3CxfEwCKaqTgMlTa8br8ke0iYYVTVjDGnmLpRHPEx2jvbkBAIfnYhr7j/04LQfq2owb5A2mQTYfCnaklHatz1xtPYnL1pC9J16JImolrsEzjykAfk4RufYoMHgX36uEDWtBUcQspeghwE0EZduQkY/RWqYGzwvYGsVYdKQFA2fHTlww0TjX5/czsx5pzSESxWlKYssNphdbZuSWaUgAbMMINN2v6SZgGCuU6X6fFoiINUEQhNWK8d9y/ZnNQlcCpjh9IR+Gfgko9ZMIiMZpzYmF4MohoQWQH1qTU33VdfSYG1ibizxl6wh/gq+asvVLXgnA+IS0q7bXkqXkVVbP6Gt73D6nHIq0uQFQ7iXBENcp1eZydCsaJ5Ghc7o+I4pMHVrFmPom9HzcoIhRuQfQys6FNaIkGqNmhKBko4btUaDvQDvYvT3K6V8XgEOiT4MeN79T5nrN9+Z3zPim5Rmdz6+Q8KzuRyIzS4DBv9J1uAEQ9HAUEkDk0LFhjaJ77VH+R4YDxG3AV3R/jEmxcih16wZsogtAV21dmsHlexaN03VW11Jzh7m3XsAdtFPULbq+9dtTzsyzWeeBiDVBEITVjEkfrZAZiNMSVNlyYze1Y7PBDUBdfmDxN411htZsX8F+Xs1hirJ1UpmF8yetKRzrNUeoQpumDGt0zmJTgRdSarExyNnVCSORHI9EhLGTUCCRAp6OkKdseeECumyL5M3wc5Ne1JpeozXVqdXW0npmnfIAn1RRFCobBdY+jI/nCFmJO2nThNbWfI1m0kHKHZ1RnaKJrse1gQnX1ZXp8aQFjD/A0cF+HoVVtrVu7TH6OeMoY84iz/FsRFK51EjQ5m7WsErXkrXt+Kq0TdfiefYfJmYEmOvbLt5yvzW2zTVQHbAjp6JxoD3D35GiJ98SjZ6aUawppUoAfgEg5OMv01qfpZR6KIAtANYC+C2A12it94J/mgmCIAhdrHShBtCHKcC1Y978LTeMK35rhGrFphoLpHOOHLkU1VKKU6aNyVMJdkcxwmKmAQAkUkxBfGomJUz4kDfpRYAEUFy3ka+4yZMIfIrEAbaJIGkC7ZhsKIytRXuczpmnXGtmTGNzilh10t8c7Yu5Nq45zN2UVTomz+ysUtfMTHU4ipWReDLp49YIRaYM5V4u1Acwej95tIU1ioY5DnWNIgNykEhrjtipB2HNRn+TJtAuAQMH0v3r3cTn2sn3ObRD490AyEc5fZnRcWYGqqnRM/51gH2/zUSEYrRZ5xQBDFgQF38PjF+d487eu2+OzCayFgE4SmtdV0r5AH6plLoSwDsBfFJrvUUp9QUApwH4/JLsUhAEQVjdmALwPF2YN1qWTC6an+645hAJDJ0uPE2sXJtCzFLb4QhYB4siHZ82xd8rro3j6FqWdFuEGLNZAGglBaPYgARKc5gEh4kiNYcpAmYGwpvJAoBtmnA8EnTGZNZ0XQZskRH2kGCK6mQN0k5IlAHcVemR0DMRMsclIVTuo2tTrh2cHo8DOiEB3RqldUz9WRbb1GuWUPQsTwCnxiO0YopUBjyWK2rxeWNqQI0a1Amrc2sDUl1juz7bdRJhaUTnHL3fXm9xHFdYQcdUuROtNL8vcac5dymYUaxprTUA04Li8x8N4CgAr+THLwLwIYhYEwRBEJaCjG0XFkLYQx/irTH6sJ3NOVsLPCfANXBciwXuKq0OcBRGczSIuzqNAMsz8gpzOQ1qRA3ARf4NEjtFZ/+QB4u7If2Jxqi+C7DRrtaI9StzCyOVFI9YMlMGvIDP6ZJgCis8jqlE15JnVM+nNAmilEdIhTW2R9EkgKBs4b/PszaN2W7a4kkMLAYHt5Jo69tErwmqdjSVMfN1fYrKuWU6R5bQHmobKEIXt+jejI2SkEw4IqgUnUsZ6xROh5taw+LvlvF280KgtM76rTk+3Ys0WbJ053TMqmZNKeWCUp2PAPBZAH8BMKK1Nm0R9wE4YK4nP2T9IaiEFWw5c8tcXzpvrrjhClzyy0v22PkEQRCEWWBqhpYqJes4QO8GkJN/hboV9zQmldapVytRTVSJOx7d0BbfOx7Qs4FHOHERvREIppux1GOnG2Sp7TL1AnquMWg7UA1uwFElzw6Gj5s8OsrhKB9HvfIUUDnVcbWHaTKCwUQalWubGXROacTOMREQcpepG1J6VYOuOY0owhbwnqI6CTUjVpVrU8+KB96X+oG1DyWhp3j2amuM9tZ/EIlPDbqHPqdjUaEGEb8M+GWc+rQX4eQnvMAKX627p02Yczse16mx0DP1hFNZf+yGzQduRjNaeJf1rMSa1joD8ASlVD+A7wI4bLYnUEqdAeAMAHArMxy8xGw+cDMAiFgTBEFYSczGeHah5MCkoet7Cp2TqDCzOf0yOh/8ZianMbI1VNdSVMzM1UzbtnvSHMcCpNMxqjPAS7kAX9FxJrJkUpzlXjbQDTgFqu0eDXlKkxQGDrL1XFBUR2b81JojtLZJ7eacYvXLvA/Tdcrren7hGnkAvRm/lcYUwTTpbdNNqjPbxBBWqFvUr5DwBigyF41SmrM9ymOouNnDDWy0rF3vWNSc/MTjsHnjI3Hbfbdi6vyz6p4+oAtpUGCPR9QMc+oG1VqPKKWuBXAkgH6llMfRtQMBbJvmNRcAuAAAgrVO11XevfNuAMApnzxlzhufD3sygicIgiDMEjPkvGM8O0GsuT4X07cXIORyYGQrWVJE4wva7rwwQiRucL0VR4a0JrGRxd3+X2lMXZCZy6IK1NUIWN+1vFjPNW6Hq2ueHRo37Cgpg1/hdB6sySzAr+eIkTGWjevUJVrhIe2j9wHN8e56uSyh50Lekxlu7hpbDyZu8lzO2IrzoErPNYe67VOyGGjFALSdSQpOI6ctO+ReA51JCoN380iomvWHM9YnlQHrdZenuO2+W0l3OC4JQOS0hyyhx2r7sdVJSoPizcxPI+AUZm4kYO+5LW/76u6PmyWz6QZdDyBhoVYG8HwA5wC4FsBLQR2hrwNwxaLsSBAEYYlQxZExwsohrnNxeNpdNA9wsXsfyLcsWNhw7DS2Kbu54JepFmvicG5jxmo6IKcyRC2m0LKYREMWk0ALyvS8cdYv0uaaq7hlU6NeQF+zxDrzp5GNJplB4wnbUwRVEh+muQDgrs6UXlscZu5z8TzYqkNz+rM4xqrUZ7tCi/egutZGo8yYpqTN3Ztt6wUX1igFbLpgjYhy1nH0MLaRO8WdlZ2aOkV2H1HN+p0ZcWmieDonYWm6d8dGafi78XkbundC9HIdp6B5Nmlr1ArBpMVdshxjymK6F53ZrmrqTuLi7wtga/4WyGwiaxsBXMR1aw6AS7XWP1RK3QZgi1LqowB+D+DCBe9GEARhnpT8Eh616VE4/KDDcdgBh2FD3was712P9X3rsb53PcpBuXPsPZ+/B624hZ1jO7FzdCd2jO3AAyMP4I/b/ojb7rsNf7r/T4iS3YyUERaXiSKoCzO3CHZSwHwxnZAmyuJ4PEUgmf6DF7CWG65vBVr/QTyrs2UjYhMNdotGtq1RinoZl/s8oe7JiRjjX9e3YsorkXgzUSsjlprDJAqUw7VjMRCs54iVsvVjXmAjQe1RHtMUklhqjdopAiaiVuql62qNAmMPAn38eJ6Th1nOkai4wSOvXHpNawQdf7lSD8h8loViqRfo2cizUBWgh7jw3wM8FpbVtVYgNQa7U45Rne6DGYXVGqXfhzy3Ucs8tSI4atHewh4Wd4Wh6or3q7VNjRe7faeyZ3E8dGabAjP8Li7+Pwpn0w16M4AnTvH4XQCeuug7EgRBmAWhH+LIQ4/E8w5/Hp7xqGfg4fs/HC6nXcZaY7h/6H7sHNuJG/9yI3aN7UIjauClT38pAOCyX12GWqmGdT3rsL5vPR624WF45mHPRE+Z/tWcZin+/MCf8T9/+h9ce8u1+PWdv0a0u3mAwtKhOdJRHP00H4wRKkBCBeP0Qe56XHeVTF84nrStBUWe0gd3Z0wXG71OVf9kxiEpkCg0aUEvmFoQ+GWuUytRijLPqD4rbXOkjKNA0bjt2uxYYygSMHGTBIwxENZ5txDxy7YezHRFdixEuD4radGaWUL7NPfdNCe4YO+3hn1txvYiSdtGADvmszy+CjkL2lGqITQRRcflGbUB19e1J5eSAfaavICuKR6n15qIotYkGBu7rJVJNEb7ag7RvXM822maRsD4g/SeTve75fqUFlUO++xxs8DuRrMlTdZri1cfKRMMBEHYayj5JRz/xONx8lNOxpGHHolSUEIrbuFXd/wKP/79j3Hb1ttw69Zbcd/QfVO+/umHPh0AcP6Pzp/y+YPWHYTDDzwchx90OB538OPwyme+Em886o1oxS1c/8fr8f0bv4+f/P4nItz2NGm0++HZE/ECawlhjGl1zkIitB+0JiVmRM10JM1uqw+zblijQvuJYtIU/ptJAgCPLerhCQbTfNC7Po14cnwSgY2dVmgFVSuC8pQFJHuLpYmNnCWcio0bhRo/Vj5+iedwapu2TdvWS82MZ0pasGOafGB8h/W5yxI7hQEg4RVUaa95ZkdvldijzXRWmskBUZMjYgkQZ/b8pR5bS2gidBMxY7jyFEBG0bGwh6JpYY2ihmGNonnK4XrAOovD1HZ4mvcobtA5PR54b+w6ihMpwpq1Tcl4csNUI6cmsshzdkWsCYKw4tl84Gac8jen4O+e+nfoq/Th3l334pu//Cauu+W6RY16bd21FVt3bcVPbvoJABu9e+7hz8UxjzsGn37cpzHSGMHlv74cl1x/Ce64/45FOa+wyJhaLcfleiVOJ0bj3c0F7TH6cM4n1LGVejk9mk7fnTr+IA8Lzycb1JpIj+PS682Huxn+Ph1xk0SmB24wKIiCYtQvzzhKx1Ezk8IErCBVitOhHIFrjXR3kzYGu6NJScvabzQGgep622nau5FSqmnE0bsGRfT8Mt3Dxi72NGPfuCymNcp9PAaqQp5xRsD4ZTbddW3jATQb0Y5PH+FsjdA+84RSuCaN2bHf4PtU7uPooaY9ub6t0wNPeojGaO9+ma5P8bB4c215xmvwfNVShUThbITaEiBiTRCEFcsRDz0CZ/7tmXj25mejnbRx5e+uxJbrt+BXd/5qj5w/SiJcd+t1uO7W6/Dhb38YdqCYqwAAIABJREFUzzj0GTjlmafgVc96Fd541Btx7S3X4rwfnoeb77l5j+xn1eB49GEOWNf6uWCiPzN6YmlbwG5QDg977+VxTNnUZrxmVilg7SWK5zemspU13K05Zv3LggoJDhMNM0PU0zYwdj+Li7w7hZZGdh/mmuImreUGQN8BVoyZuZZmkLzDhrhZwuayU4xFKpriVtdS52mesomspghTdT/6fnwHdapqfjzg5oSobtcKKmSa63rUvOCVWAiaWjVF+/ErtKf2GJ2/soZNaCNb+mW84IrvV3uc7u/YdjYQ3sV2JAnQuz+lj70ASErWUDdu2pSxGYVl3sc8A2C84zxaI41xSBihGrZwV6OJVq7tFIY9jIg1QRBWHI8/+PF454nvxHMPfy52je/Cxy//OLZcvwWjzRkiE0uI1hrX/+l6XP+n6zFQHcCpzzwVZxxzBn7w3h/g6puvxid/+EncsvWWZdvfPoWJDAH2A3guRHU70NxElvwSdxcWRJUZgQTFKb6YC9nL9AEe786eQdlmg2JBuetT9C52qTPR9TmKxILJzLlEieu8tI0SBVUycJ0o1AwThWfcAOKqFTilXho6HvbQntIm16TlJFxCnseZ8DgmI64Aa4rrcB1blgIRF/mHPfS8xxYqtbWUeo14kLxpwCj30YzOsGYnJJR6rRjNEqrJy7lerj3aXYtf24/25fqULvVLgE5tl2aXtUkhNa4c6uw06co0hlfqxRHVJp4x4EInHrbVA/zgryz4io0Lxo9OKVTr9+OFm3ys76ninsRDM1V4QoXei/E1Hi7+a4SmRNYEQVjt9FX68P4Xvx+n/M0pGBwfxMcv/zi+9vOvoRUvoLB8CRhuDONzV30OF113EV7/vNfjjGPOwI/e/yN8/edfxznfOwfj7WXw8dqXSNu2gH++Ke6isCmxeHF9oG4+4HlGpOJZj65Px4xtp7qvsYSiM62x7nUVixljZqtzG+0p9XJNGHdLJm0bOXI8EhQO1z5Bk/Ap1UgMOS7vpUxizwwyn4n2CNDqodcql8YulQdIBKUV250aGAHFdW/RhAaHjjmutiIyz8mzrNQDpCmQNWl/GtbMNm1bvzQTreuIIU4tgiONZmB7xKlOv9Qd2TQCVWsShq5HY6WAye+DuRaupXPCMo4YcNHjatw5Cjx9bQPP6k9wQEVhgw+00xDPWTcAJ4+QO6FdJ09JYGrgeesVDqwowNE4tNzG/iHwwFgEaI0eleDwUhO3txXq6Z43xhWxJgjCiuDEJ5+Is152FgaqA/j8VZ/HZ678DBoTP1BWGI2ogc/+5LO46LqLcOYJZ+INR70BL3j8C3DWpWfhyt9fudzb23vJs9kNW5/1etxxmBdqz4w4AtiWgSMsxj/Ly4FWc3KEqzxAIiLssanNzprG3JetNKJxOzg8rJDBa8ZWE3GTGgTM6CmluOuT99KJ2hUwEauOBxhIMI1s5Y7KKuD2Aj4PbzfRLNMMYOZgJu3J3ajtcRuJbOykx4Ia7dvh0VOj2wA4XNPFdX5R3YpRU+tX32ltNMzcT1NbF/D0hDwlUWzmlKYRvS5t21motf04xRx3W2V4IbDmYDuIvTWK56+JsbnfB9IYTy7FKDltBNrF/r6LvsBB01HYPBDAbf4GD9SeZddqjXbuU82nzlgnbePAmoeNAZAECoORxqaygxMfUsEzN2jcPBTjmu0zmOIuMiLW9lF6K70Ya47NfKAgLDO95V584rWfwHFPOA433X0TXvPp1+D2bbcv97bmRL1dx0e+8xF894bv4pxXnYMvnPEF/ODGH+A933jPihecq4LW8OR0alYwbB3ayn5ouTVXLaYIi5guwyQi09i4cFzE5r5ZzPVebF0R1bl+TNsORVPAHvbQc/VdbNrLBfcm4uS4PLGA67sAts0odBtmMZCBC+25A7NnHX/vcOMAd2pG43QeU2+XFDpGJwrTpMm+ZZrEXJO7NNujVsBpbrAo9Voj2DSm1zoeiW7l0eD6ch+Z/EbDtks0ja0oNf5pADcs8NiotNUtXP0K/VEKKCsgauKQiur45VV9YFPZRZxlKPG4LA0HnsrR374NTX+TXUvnnUaL20cUNpY9PLzmYE0I3NfIcEiPByBByQXub5Iwf9yaALeOJHigtedSoiLW9lF+9L4f4S1ffAtuve/W5d6KIEzLYQcchi+e8UUcsPYAfPSyj+LCn12IfKkGee8Bbrn3Fpx0zkl48/PfjHed9C48+oBH4y0XvAV3PnDncm9tdTOxAcBQ7Aw1UwK6UFaUOJ7tIvTK/JyyjvtAYUwSrFDLUorEtcfshIPO7zgLHc+j9GLSAuo7urdQ6rM+ZOb78Qemvs6UHf/bo9TA4IUkPlvD1m4jz7gbs48GoydtqpNrT/GP+7BGe47GOdLpUETL9el1UR0A24D4JfrejIAq9fIlZvTcmoNJoPkVYOhuAAmtZ/zeTHTR1LMp0H69DFA+RScbgzbtHI3T6LA0Air9GNQuKl6Gh5Q0Di5lKHkKgeehnjto5RqZ1vAcBZWnOGD8Z/jHx/Tiojvr2BXZ/9/8YSjBaKzxhkdWcX8rQyPR2NbM8P+GYjx2bWi93AC4e3gYijPzIcLeiOd4uPzdl+NlR75subciCFPyoqe+CN979/dQCko45bxT8KVrvrRXCzVDlmf43FWfwyvPfyX6qn244j1X4IQjTljubQlzRSkygK0MAD0b6Gt1DRfWj6PjA2a8z4q4PjBwMDDwEB4oPkRiaKJFSGOIUn/tJkXpwioJsi74PEGl0N06g1LIM+oqHd1GA9njJgkfVZjVGbB/mF+a+hoAGw1UDp0zKNG1me7T2jqqaQMo0ji+ExjfTma1BtM9aVLEHQNaRdHMylq6t5U19McMuW/xyKc8o/tSWUONGsqlx8ceAJo7KbWsM/xkl4+7Ghq9vkIj1RhPFQZj4H+HgF8PK9zT0PjzaEKOKjrBQ2oeTnxIZdIl311PceOuGI3Eprfvamjc3AjZUNjD3fUU9zfZPsVMSVhiRKzto5zwbyfgxr/ciHNfey7eccI7lns7gtDF2457G85/w/m46e6bcMLHT8CNd9243FtadH51569wwsdPwO3bbsfn3vQ5vOnoNy33loS5oNyCgSo3O5juUWOwqzWl9eyLWPzwPE0A8MPuWrkieUqRtNH7rI+ZmbJgMKIlIlEy7Wgsj21CTLF/yp2teUqP1daTsKiutYa97XE6J1+DmQDSIW7aiQam4UDnJPTMBIUstce0R60XmfFjaw5RxHF0O1mPjD1IYjdj6w/TsNHp/uXrN525WWzTxbX9qBNVsS1HxnNZW6OoD23HFXc38NtdbexsZ7RP10PqBvjVYIb//OMQtrd15zxjcY4NJQclV6HHVzhqYwlHbyxhIHAwGGVwlEY7y/HT+1u4q6VwzU6NS7ZmuHRriu/d0yQJHVRts4kXYimRNOg+ylB9CK/9zGtx9qvOxpl/eyb6Kn348Lc/vNzbEgT884v/GWc8/wx899ffxbu+9i6ks+l420t5cPRBnHr+qTj/9efjAy/9APqqfTj3++cu97aE2ZCnNoXXGCbxZQaoA5MNdgESQ5U1dgqAV+oeBj4JHlHV5tFSxu6iuo5q4ZI2CTRjvxE3KWVZHB+lFEWcymu4Tsy1I5XMJIJSjYRFu86WJE1a31ic6BzV3o3YtP5h2LrzbruvuGEbEYIq24549FrXJ5E3stUKVGhb65fFtuu1OTzZqy6qUzes51OnaakHHcPaIq2Rgp9dxrVurp024IeAswb9KkJfNo5rt7Xhbyqjr+QhzHLkWYpfDLvYOeLBKbs41q0h0x4OrrqoBT6+ujZAroEd7Qxb6xlecEAJO9s5Mg2UXEURtiTChloJvnawbbSJmq+wNnQQhBqjAB6MJuw7YMPgRZx0ImJtHybLM/zT1/8JY80xnH7M6fBdHx/Y8oHl3pawivngyz6I0446DRdddxHOuvQsaD3dh9i+Q5zGeNuFb8NYawxvP/7t8BwPZ3/v7OXe1t7FRCNSv0I2EMXZlPNdazqUa202HIciRGGNUn9ZPPU0glIvdU8mXDTfHrXWIGYQehpRfZob0F7MEPu4AUADVS5+N95lWWQ7Qx0PcAIAsY3e5TxvU3OUKclJvGUxaa4soQhUGvPweF4vSztNCj3VAbz+xHfBcQtCLyvU3gFsu6FId7o8NL411O2z5petJUiln9aK6iQa+w6g6x3eBiCj1zV22u5apUj8OS7bovg8LkvbvRbNhXMNM4v0Uf0BjlsfwlEhxsaG8ZU7xnCa4+AZGwMcVstx5iExzvqDwoaSQuSuQyXehv0rLuKcGhHKnkJpXMFRyqZROQ36kJqLA6su/mZDjl4fGNpYRpIDj10ToOwq3Daa4hcPtPHf9cI/Oo249EuYcmbsPBCxtgr4yHc+giRL8NZj34qd4zvxqR99arm3JKxC/v64v8dpR52GL1/zZXzkso8s93b2KLnO8b6L34c0T+nv4dhOXPizC5d7W3sHlQHuGmxT2s4MLwdArvlz8LSrrqV0YBoBg3/tfs40A5gPVtX5j8XjdKgb2C7LzuvZLsOMaKrvtKlQM4AdsHsv9ZKwcUHCUGckxLwypfjKLs/PbFnBmMYk9BSsQMozG3WLW/S44wBulVKsUYMEZHEIuWmWABB4AT7zxs9gxC1h5+hO2qcCj8vyKFoI8FxO0LnMaCkjetOYBLTrkaBN27ZGzeNpED372Xs1fK/9PovodWnEs1RTul9K0XnCHqqVS2PqmI0b9D4qHnAPjacPBKiUSnhkGCPo7UG/m+Op6wPkaQxA4WE1ByceEOBJfRrV+D44uo1e30Ezo6YDRwGBo1DzFMaSHO3MiquROMeJB1XwpHUB1oYuqr7CXWMJcv7d2FhSePJaH7/e0UJsfh3SiFPEMRZDqAEi1lYNZ3/vbKztWYt3/u07sXXXVlz+68uXe0vCKuKkJ5+Ed5/8bnzvN99bdULNoLXGv2z5F6ytrcUHXvIB3Dd4H676w1XLva2VjbF3AKyZa1ckbQ4fhB2X+zILiD6KfAE8SzIgsdAcosfyzI5AMjViSYuiJmncLdSKe2nyWKdonEUdn9uIK1OnlfIHeRZby4w8tkX1npk84FMHqhkHZQawgyNLOgOao5yKZKFnUpGmw3OiSXOh9OCcV5+D521+Ft584f+H1z/nNfRgqY/r8iJ0BKvj2dSvGXpu7kuekSBUDoA+IOOh83lqveY6554Q1YzZ4iNLbPSsupbO63Na2A247i/v3MPH9ys8e50DpYCKn+CRZaDq5EAOPKTHQ9kFWhnYLNjBY9Z4eMY6F6V0BxJVRuAASimELhClGmmu0cw0hto5HtrjoZ1p3DQY487RBBsOdbC+5JJ+BXBg1cX9zRypph3lWlOgz9AemyzmF4g0GKwi3n/x+3H9H6/HOa8+B0ceeuRyb0dYJTzlEU/Bua899/9n783jLKvqc+/vWns8c41d3U033Q2NSAPSIOCMQAziiCbmFS8a4xBjhhuH5BJfk+ub92a4hphoEmNyTWIwxjFRgiPGEQQERAEJDcjUQ/VQc9WpM+1x3T/W2rVPVVcPQDfV3Zzn86muqnP22Xvtfc7p89Tz+/2eh9t+dhv/41P/Y6WXs6JQSvHua9/N3Tvu5q/e+lds3bh1pZd0bEMluQ9YpgoloWlkbxzYC23ZfaW5dUYSLiIsC4RQdg0VgGm+b+YfumHTTG8uUwIVpmSqlAlvN8HhaZqvtVPX9hNBQ9tvzI8tLqeGLa2GNcZ0/mZzEsYf1opZlmtpuVq9as/l+wTT7G7KpWErJ50HwXte+R5+4Tm/wJ9f/+fccOf15hqYSKnsfNLYTHB2mcDGnfy62J5WP21PP84tGlJpyHVmxNue67IAMXAKXckKjlYNIQ9sV4bMtus6WSIr28ZzXDIQYycdLKFwRYqr9FqbnYBdjYQ7JwL6XcGAK9jRTFlXlJRsgZM2KaTT7Ggk/HQ64r7pkPtmIx6ci3i0HtNJFTVXsqZgMexbvHx9kZ9ORwsa63SQUo+UVuDilF2NiO/t7bBfqMERnmzvkbWnEaIk4p0ffyc7Jnbwt2//W4arwyu9pB5OcAyUB/jY2z/G6PQo7/g/7yDsbox+miKIAt7+d29noj7B3/3q31EtVld6Scc2sg/47gnIOFx+IvJQmN0Fk4/A1PbFDv7Z1GRG5gBtVVHKS5/dyAhdN7FzizmRjEw50q/qxvnM4DUOADM5uTTvNNtXNmyQhmaSMtA+aa0ZLXJlk5EZsbTMFGIa5+HoSah7wUqDuV2HkHr4oTQElsslZ17Cu1/xbr5w6xf46A0fXVzatYyamAT5cMByWaWgDW+TQA83hPPavkMleq2ZQa9bysPUCzV9PaproG+dtkPJlLfEEOjMay0OeIYf8LqBGV41FFB1NGXyLe2Xlk3lzreafOnhWe4aa3LvdIAAVhUsdrcS7p7sUJExJ7kpBQskEVKF9HuCbbMRt09qc9thX3JGn8PqgoUlBEIIbAHrSzZf29ViTysmTBRTQcpN+zr81X/N8d7bp/nyzvYir7ajhR5Ze5qh3q7z6x//dUpeiWveeM1KL6eHExwfvOqD1Io1fuMffmNFQ9iPNUzNT/Eb//AbDNeG+ZM3/MlKL+fphaChiUU3YkNKugmcV9YEzK/kKhFoAlYaNERj0ASgC02Oamv194xsZBBLet+WIrPU8KvGx8zklBYH9O3FfvR0ZstYd7RML1e2PicnRphAeNvNyWK3oa4Q1GojXPOma3hg9wP8wWfN0JnlmClLqSdOD6VaCkuvzSuaeLBpmB3VxLI5qS06MsuRJDRRWUV9ffxq7u1mOXogIzH+a5ZjrimMePDy4YT1XsrmqsMVG4rglZm0+tkVGZKqFLvmA657rM5/jEbcMueT2D7DBZuiLVlftlnlwbAncGT2PAj6PIv5MGFD2eL8IY+qqwcJ1pdspICZICFIYT5K+e9bqnQSPTGqsxAELzmpyO+dU+Pl64u8flOJF44cXeuOHll7GuKhfQ/xv6/731x69qW88aI3rvRyejhBceULruSlW1/KNdfrD4UeFuPenffyka9+hFef/2pec8FrVno5TyGMr9ahjF2PVdhe3vyOyMt/oMlUGpl+rpZp+m8tjobqhuVq0pORwcy3bCF+ydTWpK2/WoYItecW20K4Jd3A7xS0F5lX0Ua+fg361+XkTUhA8f5X/y7jQYd3/svVBJmPmeMbRS/Rxr+HgmXKpVm/WXdOquVo0he1usrNSl8Xt6S/siGHsJ33pmWk0ta+ZWupI+LOgto55FlI20MB1+0VfG3S5WuTNtftjrEtm5+1bLbNaxPfTOxypKDPtZiL8w5HhYUANldsipYeIkgUzEeK0WbMddub3DIWsKsZ89h8yClVB9cSuFIw6Fm4lqDflWwoO/gmyuDZgy7yKL6kewMGT1Nc+/1rueSsS/iDX/wDbrzvRnZN7VrpJfVwAmFt/1o+8LoPcPMDN/emHg+Cj33zY1x85sX80Rv+iFsfvJXx+vihH3S8I7N0SOP9vbdWEpkxa0aCMhPaNMltLEATL7dgplBTTTaE1D1dQujpy6zEuTQsvRvZUIOwNEGTmL4w40uWGex6JU2eMtITNLRKJc30qsr82TxNkBCQmCGHLGBdGquN1gyvOf/VvOCMF/FHX/kIjzXrOmkh82eDPOvzUFCpmUyVi89T2rkxryf1uWSeb17VlGirehAjNsMVftX8rOlUzYFfWCtZbfmcWnN5cC4ClTLRSVBhDF6RxPL4WVoAy+G1pzW4ZCBixE0ZCwTri4LpdkorUnhS8OBcSM2VDPuSmucAKZ4UnDvsUbQEKSx4q+1sJnxxR4vAVH0vWu3RilOKtkQpnTDWiFJKtia+qVlznLmJHCX0lLWnMa7+1NUopXjfa9+30kvp4QTD1VdcjSWthddYD8sjVSm/8y+/g+/4/M6rf2ell/PUoLuZ/1iB7ZqszGoelp6VHZcam4ZNbSFR36e/C6EfJ6Vugl+a7XkgSBvcClRXa9PaoLmk9Gh625rTRq3rum6ZPYeUeo2Z1Uaa6p65JNIlyWyQoTUN7VkKtsP7X/s+HtrzAP95341mEMDWRC9T9NIu+5IDQQhNIrN8UMfP16fSXGHLJj/Dpj6/+l7df7iQSmAmSIPGQokWIbioL6LPVnScCjtDj76iz+qiw5Bn8bp1YDcnFwjimeWUXzpJsakk2FCSXLpKcJKvOLvfYSZI+Nv76zwyn/BwPeE7ezoEso9IlJiLNAFrJ4p2nNKMUn443uETP2ssEDWAR+sx982E7Gsl7G4lfHlHizCF6TDhB/sCwhRipfjW7ifQQ/k40FPWnsYYmxvj77/197z3le/ln7/7zydk5E8PTz3O2XAOr33Oa/mbb/wNu6d3r/RyjnnsmNjBJ7//Sd526du49nvXcv/u+1d6SUcXnXn94d49XXg0kJGaTGE6GBaa8IVprj/EvjNfNNBkIzO5LfQZ89nDSOUIW7rHTSWmbHiAj+NCzfi3FXUvWZpqEmTZWl2zbAjaIKaNsWxDJxWg9FSlkIY8Kd75st9ipG+EX/v4O1FhS28ftfV6k8yOxPTKSalVQ9vVZC415r2pUcKkrW1FMGkNhb48aL01bbzTjCIZdXLlMQuXdwv6sdIy5eP8mnkkIH0QgnklqVoJo/Mpz6jaXDjsstqX/KzeYag6x1pfUJGSPkdQcwS+LRBC4Ui4fJ0uVe9sRKRKIQTMOyfjqDZhMk3VFUghmewkXPtQg+/t2/91MtpK+NyjLTZVbKaDlPtmIzyp6WyYgmdBkrL/NOgRxoooa2944Rv43Hs+x5Z1W9g4vHElltCDwce/9XH2ze7jD173B4hDNcH20MNh4AO/9AHG58b5u2/+3Uov5bjBX3/jr5lrzfE/X/c/V3opRx9xR3/ox0eZrPnVfCJTHELFy6YzTa/UooEC0MRkYX81PcFY6NP3BQ1dpow6eh+H+/+oUzB9XmneiJ8h81TTv3R9M274rRmjhCW6z0tlZEuBU9JqXXFQ31cahNIAI/1r+bWf/zW+fOeXuWv0Ab2ryFiCNKdyLzZpmwb/bICgosuuQnblXxrD3KizZILWQKU5qXO7wtKlYwYNTH+ctDSRVqnuwzO+bD+ZbJMYg9wwihhrhpxdk1w47PHMmsubNpe58pQiq60OWysxa1xFvwOurkxStITpVZO8ZK3PG04ts6Vms7uZ4Kg2kSwwF6Y0Y8VUJ+HBuZh15QNrV6OthB+MBdw3q1l8kLJggBskYCN4SbXGL/YPcrK7+LWzcXgjW9Zt4XPv+RxveOEbDu+1sQxWhKxdccEVbFm3ZSUO3cMStMM2H/ryhzh307lccuYlK72cHo5zvPCZL+T8U8/nL7/6lzSDg/Tr9JDD9qgryZ989cO84Jkv4ILNF6z0io48MtUp62V6KqBUPlV5OOa5SZcdiL2ErPkVk5xQzs1ts32rVJca2zOmf20ZsrZAdLrvM2XW+QmY281CA35lFfSfrCdAvbIua2bTpbanFbZCbfFxklh/Ob5eu1vS22bXW0jeePFbsKTFn133Z/n1UOkSvzljByJM5FOW76mU3jZTKFWqz19I3buXRWt1X2evkq8hC2e3HK3S+RVN2LojrfyqIXM1Hk0qfHpHzNdGA/71vn3csLPOpoqNKwUpOnXglIpNpeBjOw57WilhonvOFKaaqnfMkG+xumCxddCj35U07RFa1ipuGmtz81jA9/cF7G0lh9Vv1m9ZDNuLSZ0vBH+8bgNvGR7hFwYG+dN1G7igVN7vsVvWbeGKC6449EEOgBXrWds2uo1to9vYPrF9pZbQg8F1t1/Hvtl9vOWSt6z0Uno4zvG2S9/G+Nw4X7ztiyu9lOMHnrZeuP6ebzNRn+Ktl7x1pVd05OGVjelp8antVRMmz/JwyFoU5NOQSz3c0tw5n7CRq2HdpCfq6Fgkv6bPN4NXgYGNuuRZGspvb8/pPq7WdJ5wUF6lA9kLfSYlwNHryTzY/Ep+LRFajWvP6ZKjbSZsM2Joe3p9KqVou1x27uV84fbrGG3MaEKYBbpn5+qV8zzUsKnVtsaE3n9zUm+TKY5ZeoF0oXqSGW6wc2USunzZVK68xR29xjTRxC+OzESp6VezXX0N3TJTosLPWhaR5TPWTnhwLqQZazUsVopISRIkUkj2dBRSCCIFsWFdWVCEELpE6VmCF4y4DATbGAp+iiMFw77k1IpNvycQwPlD7rIzyhbw+2tO4p82beYjG07h99euoyT1c/LCSpU1XWqaEIJf6B9c+H37xPYFvvNk0OtZ64E4jfnk9z/J773m9zhtzWk8tPehlV5SD8chThk5hUvPvpS/+Mpf9MxvHw/SGCyHMGzz+Vs+y6+/9NdZN7CO0enRlV7ZkUMa6w9klebE52hDyFwJEvLApq4ZVHJg1/9OXZOQNNJEY6kHmRCGRLmmFGoZn7aCLks6hdx0tjNr0g1S/bhinyZopPnjs+NkU5bmNbJgGpuF0QsJwpQcMUQyjvLIKqWgOcVLX/wrzEYh/3jrv+vyaDfpypD9nCaaxAUNk3Nq6TVajv59dlSTzEKfmWg1RLH7+nbqJsc11ESuf4PeJiOHlpmAVaku4XoVwGR9CktbeUQdNhYFr1/tMuK7zIeKvc2EkqN7zLbVUyq+ixSK06sWZUcTrpQs5137oaUK5sIUKTRhA4Gddjh/0OMHYwEjBb3N5qrNKt/CkYIfjue9a44Q/PXJm3hOuQJAqBSOELy2f5B/nZqgau3/x0dtmdueLHrToD0A8JmbP0Mn7JyYf9X38JTgVy7+FYIo4NM/+PRKL+X4QntWqxftGT5106dQSvHmi9+80qs6sujU9Tm2ZjhSwdaHRDCvy2xBc/88yqVwi0ZZOlC/mdJE4kD78WtQGtYh8U5Rk0SnoN39/aouKVqWJkReRStsxX7TzyX1VCQm3qk1rcuicSd3+2/P5devPaN/VonnV5WNAAAgAElEQVQxxa1pgpMlDbgFbTxb6INgHikkrzr/1WwbvZ/Hxh9bCD9fULcWrlcz7zUL5rWK17dO9795ZbRqlyUNZEkNxqRXpfkwAeRKoFJQHoLaSVBZDX3r9fVIIn1ug5ugb4O+z/H1tpUR02coef16i5etL/GckSLPWeVz20SHP7xrhut2NGmGMQMypiJTBj1NuGypvdCUUkQK2rGiEesMz3asmA4UqXAQSrGmaPHsIYetAy5bB1zO6HM5o8/h7D6Hs/sd+l19DpdX+3hOuUJRSnwpKUjJKtvhGb4uh/+o2Viw78hwe3NJFusRQI+s9QDAbHOWr/z4K7zi2a/AyfoLeujhMGFJi1ed/ypuuPsGpuanDv2AHhbDNIfvm93Ht3/6ba644IoTb+BnYdrwqTpepEnN0rSCpcj6qrKcyieCQlV/uSU9SVldrW+3TAh7a0aT8rCd929J2yhlZmozDrRNR3MKwk5eTszKmYkJfs/yMsHYhlTybM4k0mvI+tDigPNOOY/nbzybH9z7La2WNcZheidMb19M1jLbDpXotZWGjFpoa0WsM79YeYwDXSZtTMDMdk3Is4GFLPA+MwvOVMA0zku+WdqC7Zm0hbImuranlTXb5cyawLF0adeyJGf2ufxwPKSdSoSUbChJ1pUsKo7EtcTCnwFCCFAwFyXcPBZw73TIZCeh5grstI0SiiBVrCnaDPk2q4sWFUewoWxz2UkFfmFjkTduLrGmYHHl4BCO0KqdLQQFKSlJyY5QD8jsCkP+amwvO4KA2Tjmm3MzfHZq8om9jg6CXhm0hwV8/Sdf55ee90s8//Tnc+O2G1d6OT0cR3jOac9hoDzA1378tZVeynGPr9/1dS4/93LO3XguP3nsJyu9nBMfC6qIyJvmHy+pbM+Dayw2lCk/xoEmYZnNhVKarMQdkyMaG2sNoQmPEKbRSmr1zdGGr7RmcxPhbgTzZmq0Y8qkLmBIlV9emO582bkvQyrF7fd+W5MoIYyZraX79OL2/udrOZp0WZ7e98yu/Ly60annQfKQl4dLw7p0qlKYz3zVPF3yVOSh7dI2RsImkio1ZDOJIW7yaMvilLJCKEWcwlgnQVkOu5Ii5/sWQwWBLbNRAr1rBSRK0YxTxtspYarY0ucggfF2Ql9fGYXg3pl9jPgWZVvgScFJRYs0EcQdyZk1xaNzKZcPVajZNgkKIeRCP5svJT9t5gNUdzYb3Nk8RDzXk0SPrPWwgFseuIVGp8HlWy/vkbUeHhcu33o57bDde90cAXz33u8SxiGXn3t5j6w9HliOJkZpohU1Afh9mhilsTFmXeYDNQn19kUTKF7s1+rW40F7xnifOXk/VuYdtty+uuOnMgK0EC1l6bUvWJukmsB0lmTrKqPIKTNFmvW3ze+Drircz59zGZ+582s0bV+vK4u38irgxfqaLO3VizsQe1qF69SX940TQl9fKfU2iTHutcyQAJhyaKz73PQN0L8+7/w3amEpbfN8Zy++SLin6bAzqUBhkP+zp82QVeekAky1Y659qAHS4Z452FRKedkai3qYolAMeJIkVSgEUar48VTI6oLFM6sOawoWQghKUYqlIhrOGgRgmdpiJ1YUQh+vXmJdDE5ic5aCuWqCg0WiFEoplNApBY8GHS6q1vhR66mbeO+RtR4WEMQB3/2v73LZ1st4/2ff33Oe7+Gw8dKtL+X7932fztE2On0aYL4zzy0P3MLlWy/nT7/0p0/NQS1Xl6KyxvTjEY6JPrK6/MAsWys4WV/Vcp5gYFSdOCcRmO9ZqHrUMVYWxmC3W32zjRVFmmrSptLl1TkhdJlPJcsYAmeajTJB7e3FwxjpQVx6l5K4Lpy1/iyq5UG+/8Ctefkx7mhS65V1eVYs0w2VEUHQ518aYqFcm70+LJPnCcZ8ONZ9ckKY643+HrY0ERYyV+JKA3oQwimA5fHaoVmGE+0uu6kC24VDyYc9YYn33DtPXzjObJgSpQAJIyWXimUz2VaMFCw8KZgOUsZaCQKFbwmeUXVoxoqiI+gkCt+Csi2w0ybFaB8lW1C2BYlS1DtgzxRBQCFxsJS+JoOWZcx0BZ0kIQWaaUojTSlbFuVU8o75VbyoU2HaivnX0iTfKxz5fjXokbUeluCmbTfx6vNfzSmrTuGRsUdWejk9HAdYP7Se1X2ruWnbTSu9lBMGN267kUvOuoRVtVWMzx3lvFAhdb9VFrB+oInIYx1xqIlTlm0pMP1dxoMsI2wHQqeuCVkcGOsMV1tRRC3dsJ9EC1OKC8doz+ptEFrdysidU9g/+9SrauKYJpqEZX1nlqOHBCCPigoa+kvIvNdrOWTB6Em8bG/eBZsvoOR43LP9Ln1DEgIm3ik2Zcegvt/jFiELrs983jJVMI1yf4w4NOVVY4AbNnUcF+hr6pbMeUT6fBXm/AS2bTHsWZCUIArYVIQRK2EyDjmnmPKSLZIH50f4zu4me2frOJbFa1enFGTE3VOS540ImpHioXrMporNaVUHWwokeiI0SMA2YeupAkGCm9Q5u9+hnSgakSIMbT1DkujzVIDIhE4hSJXCl5L5NGHShNzfUq/z91MbOTc0XnYxPDco897+nXyzeGAC/UTRGzDoYRHufuxuAM7ZeM4Kr6SH4wVbN24F4O7td6/wSk4cZNcyu7ZHF6prQPM4VtPjji45Nqd1ac6raGI1s1MTh0wpOhCSMC/nZYqRZRsbjhJUzZRiadgoeI4hKl3TlUmUq3pZgHrme+bXTC9akUXXOQuQF2L/5ISlprVLke2v0JcPLnRh68atTM6NMzP+iBlcaEES6H1GbX3bUpudzBQ3v0GTLeksGUhIzPWe6urDMwrgon1KQ3wdvY9CLY8Ci1rEYcBEYuv1F2r4jk0zCCklTTY5LYYKNsPlIldsHkKUhylV+1lXK/KcYZdNVZupTsrd0xFhqkuhlgBHClxL4NuSoi0Ik5QoUUihr6mdtKh1Sgy2qgwoj8k0IlKKPa1Y+7SpRWevuaVShEoxbDt8cXqSuck4J2pdeFtj+MDP15NAj6z1sAiPjD3CfHv+KfqQ6OFEwNYNW2mHbX6252crvZQTBtt2bSNKoqfmjyaltKITNnXv1krAcrQC82QgbU0ECtUFo2HdSH8YHmvdUGlu09GYMJ5mqSYjwkI7eWFKlWaQoDGpla0s5zK7PU10D1yh32SOtvXtSVdZMztWmjyBCC6hhwm8YlcAfY5zNp7DPTvuYZEx7QLJmly8DjAE09ZrFlLv3/H1ayMNF5fIbc+kLFTyVIeMBCZdZC2bMM3UxCgw6RLmWKT8x4THg22P8QBumLRoByFeoiPA5sIU25IM+hZ+sYIt4MIBi/Vlhw0lm7VFi2fWbE6tOjSilFTlU9RK6WfLEkJbeCQpVhqg9lUR9QJOy6My08c6VWSnUyeRKa00JUFpdc3sJ1GKuSThsSBgexiwL4pYnSzvmrDmALc/WfTKoD0sQqpS7t15b09Z6+Gwcc7Gc7hv133EhxNe3cNhIYgD7h+9/6n7oymJ9v/gfqogLU2ysjJs5xBluQPBLXblaXY17T8Ru5DOPAtd+tLW++6YicXWtCZn3fJLFp8EuvSZOf4LkZPFrH8rbLIoAivNzHglkBrlydHbLU1SWIqwCaGx6siYhSFOVcdl06pNfP6Wz+vbbc9kcYZ5iHrYXKLcZTmkpqybvSb8qlHuLD2FGnWM2mZpVS9s6RJnp77YWgS0yhkFOfmbH9OE2qlAsQaOT9qaZlW/ot8K6XMSfjpvURAQColjKc6rRcyHCb84HFNPPeoJOCKm5gjiFDoJ1MOYId+iGad4liRWECZohc0CS2h7D5ouJFKzuMhGKlgf9TNvTfONeC+nNgd4QaXCoO1gCe3ZZguBUCp7hpiOYxqlGDWjEEsyD+7wjs5UaI+s9bAfHtn3CK949itWehk9HCfYMLyB7/3X91Z6GSccHtn3CM8+9dkrvYyjj+xDfOHnJ4isBKmUbvQXVp4U8GTQmmaBWEUdUwpUeYpAtm4h8x6uDErp3izb00QmDrQCVh4yPW2zel99642C1cqJjlNYTNaynM9s6tP2jQ+aiYhqTunHmKir1UMnAbpasjApKyyoVfJr03ahOWGO5+dl2271L+rk6QuOD5UhTfjCti6pZqpd1rtmm0nTqK2PkSUVZIRPDueJDHEHLJtzBy361SwEIa7lMlL0+Mz2gJtmHd57asrOwGa8YzFsB5xVUJzkS/odC0uAQlFxBJurHrFSTHRS9rQSzuhzKNg5pe4k4NsClNCDt6ENRoWzEGxWNd5YKlL2PWzzHLaSBE9KJDDkOJRti7ubTXaHIe8YGWGvnbB2e06jZq2Yj1THnugr7aDokbUe9sPY3BgD5QE82yPo7lHooYclsKXNUGWIfbP7VnopJxzG5sZYVVu10ss4+sga6i0bgkMY2B4MWfltQU07glOt3YMCkPeIZUMGaaLJUxrvP00btReTLqerp83xwCkb8mYe12zp+7r/781SELIJ/bhjckJ1BBLhvOa7tqP76+KIWnWE+6f2MNo9oOIWNfGyjHInrZx0euWcLHcH2ceB/ir2adJpuZAk+vma36dL546XDxn4Vf04y/S4ScusW2mrD7+i1xt2TFm0gwib4CbGKE0hjKVHvT7NznCEmhCQxowUBDUbXKlLk0JBomBdycIWglQJpKcoWXobjO6lo6YgTRWyGMF4CaW6FTGFm1gUDK8XaJ3TNUStoxS+FEglONUv8JcbNiIRzIwkDO618AK9r1pi8cXxzQB8q1DnmureZV9OTwSH/WeMEMISQtwlhPiq+X2TEOJ2IcTDQojPCyHcQ+2jh+MD2Qfvqr6nwQdFD08Kw7VhpJQ9snYUsG92H77j01/qX+mlHH1EbV16fDy9ZcshTfZX0mxf52FWR3SJ8cmodxmyZv7uNILIqGJZoPlCnNQSLATAK02QSv3mcZZW31ozZhjAKGgFM5iQpSuoNCc/cWAmU42CJV3zXeIV+tg9P8PeVkOTyo4pXzan88gqIbSthuVqpSxbV9xVEk9CTUhbs9Ca0s9R1l+o0jzSy/ENUTMkSFr6/LNEApUaghsauSvVpWWVcFfDYy5I6LdT1hdgoh3paxA0uHnXFEmk++XiKGDnfIuZdkwjSqlHKQmasCUKpFAULEHZ0b5q2dyGFAILTd+VLVBd6qcCUAKhBLMmezVWumctK3taQJjqAHlPCIrSwheC1dvtBaIGmhqWlEVJWbym1c9Hpk9+vK+sA+LxvGrfBdzf9fufAR9WSm0GZoC3HbFVnSC44oIruOWPb+Gxjz3GLX98C1dccMVKL+mwkH3wru5bvcIr6eFYx0htBOC4IGtXXHAF5206j+ee9tzj4v04NqvLKU+r96EQWrUqDnT1nz1JeGWT/VnV3mBZM/yTQebXFrY0AbG9fBoyjaE0mMdYLSWHUQfadaOkifz38Z/pfi7IFSwwsVShJmZBM/dga8/pEu3MDk2+UJpIxQGkKY5f5bG5cebapvcu7mglLGpBY0p/z/rVLDO5mmWDdpZ4hVmuUQKLul9vbrdR5rp81jLFLg60Uto2JV7Qa80e15yCYJ4rTn8Ot7z/yzz2ga/zn7/9KdxVzydKUva1Is6sSZ67Wpd9fzYxyz/fs5Nbd4zxWD1ilW/xwFxElCgasaIRJcwGqZ7iFIIk1ekFSaqPrR1cFHNhSpgoUuWQWjYJaSbkoYDJJGQ81NYcjtT2Ha00ZTZJaKQpkVE1m8b7bjQKKc4cPBLuwrCMt2/icF5Rh8RhkTUhxDrgFcA/mt8FcCnw72aTTwKvOSIrOkFwxQVX8MGrPsi6wXVIIVk3uI4PXvXBY/4DAqDe0g2+Ze8J5uT18LRBydf/odbbT7Ap/ClC9n70HA8hxHHxfsyuacnb3x7ghIXtm74myzTBY9z2y/q2g0LkGZ/dWJhGTPQ+MmK1HJE64K6l3j6z5QibmnQkEVTX6vuiQPeClYd0OdIt6wnI/ZQ+T2eHOiY83nJMsoIyPWcVfXuhpgmm7YFd0ISs20ttwTy3a9ChPavVuWCetaUKg16BtJt4WbYucboFfb2S0BDMRK9HmLKob4LbLUevxfF0LTF7DqSty55Zf11pSFuaSFv3z6VRrtZlRrhBQ6+3PcMVZzyPD77u91nXvwY5/yDrOj/md887jZNHNhMJBxBsqnqaXJeGqQ2u5XlrKlRdi3acMuhZ3DYR8NBcxGQnYaRoUfMkngRbwmyQkpJb7YFguGjjWQJLBMhSQCQTQpWiREpHxPxnuo8HgwY1yyZIFeNRxP2dNj9uNtgT6vNspiljkf75lvl5fqYOPb1rtY+MUfjhKmsfAa5mYWaZQWBWKZWNkYwCJx2RFZ0guPqKqyl6iyXwolfk6iuuXqEVHT4S0zthW72Wxh4ODseUgZJj3PX+eHw/Pi3fh0nU1ZcV5oa9TiE3jj0QFhS08uKeq/asCRsf1cTJ9mDwFK3eZf1V0gaWqiQiV478qt63X11MGh1fE0HLgsoIVIahukaTn7CxvLdbRsC8kiZ0UhoLjLIhRv7i/SeRzu/s9i7L8kOLA7oHLFtTZhkSNBj0imyoDCwxy+3+yFeaPFmOthaRVj4cIW2dMtB/shkMcPOQ9UJt8fRpZbXe1i3mimhlrSndFnOyWqhpsugUuPplv0XRLUBrFKZuhc4YTtrkRSevX+jdm+rEmiR6RdbWSohCDbwSZcciBXa3UqQUVB2LgiVwpcCRElsKqq40wwcshFFkZ57goQZjZt02DRlQdzvcYY1TlxEdP+DRoMODnTajhpSd7LrsCjqMhgHzSUwrTfnm3Axfm53m2srBVbNJGdFev/ag2xwuDvm/gBDilcC4UurHQoiLH+8BhBDvAN4BYC1Tvj9RsXZg+SfoQLcfi1DHs0FmD08JjpdIsuP5/fi0eh+mse6LQuQThguGV4e6DmrZHwEz2Si00lUdAaMIk0YgB8x0ZGIGCcwBi4bALPI+W2yYqjM0XaNMJQuTmAgbOlPL9+CloSZJtg9JIw95z95LQdOoU4kmZaUh9gtR98pazfPKmpz5fbokmpUmhWDY83AXrDWahvR1IDETs0HTEERD9pKu4YhsKhS0jUgS58RuaXlamqzRhelYoa9vatS7OISky78vCljbp9snCE1uajwPnXF8VaciQn40GXPj7qbuwVOKsdDCIiRFW6G0Ejijz2Fd0cK3xKKnxLcEIYpUaTEQvQqiVJHEYLcsVGKTlhr8kClqruSBGd2jl5IrUgAFITnJ9WikKfOm/Pnt+iyfmdLWLP9ZqPOugR38cmOINYlDKZXUlL4+cyLm6v5dvMc+lCJ8eDicP9leALxaCPFywAeqwF8BfUII26hr64Ddyz1YKfVx4OMA7qB82vyvs2d6D+sG1y17+7GO7C/5JDm21ZIeVh6Zt9qxrv4cj+/Hp+37MGuez37uzJl8zkNMpieRVq0ykrf/jk3YuPEaQ9s44PflZq4ZSZIyV6ssV5M4xwShdxOwODSea+TqVBzoXrblcnKlrZv3ExP87hZNZuacIUFKP842ip2wjWFurI1vs5KmysqrSpcK09AMM6gFi4/xdouxdsOUMiuazBVq+nwytSub4EwTwAxnCKnXkuWdxoF+bNzRx0pMTFXU1mpisU9v35rWSmIcQHNGH0ulWuW0HBPNpadGF96P/hr9PDQfAxXTkf3MR4r7ZkICy4c4RMzs4uyBQfqFS18x4cfTcHrN4cwqoBKmgwTPEkhHx0LFqaIVKz1UYFS1VpQy0UlZPd+PSnyUcPDaFR4a61CsxDzL0UM8n56eYkM1YtByUEDFsphL4kVk8MJShc9MTfKSdpWXtKu0RMqf1fZyn9tGKDg/LFFQktu9BoE4cpTnkGVQpdT/q5Rap5TaCFwJfFcpdRXwPeB1ZrM3A9cfsVWdALjm+mtoLRlDbwUtrrn+mhVa0eGjWtClgfmlTaY99LAEjbY2gMxeM8cqjsf3Y3ZNG8HRMdk8bpCZyR5sUtQtarLklfL+suWgEq3cBQ1NslScK2fdIfZpkv8eNPJhgm6z16WIWnpiMu7ohvr9gtwtTWy8Uq7YtabzJIGorYmaV9blxOpqqKzKy6PdylrQ0McL25o4haZ3baEHTzDfaVDxS0ghuxSzbCCgCOVh3Vs3P6aJVH0896VLY03UgoZR9VLdd9acMGkXHU1ya2uNQmgIahyYn5vmy+SbVlZphdD0x11z/TW0wjb4q2DVz4FTI3aG2LfnLn77jBI3vmyYT72gD6qrOb3f5TQ/ZHK+wcMzbSzLYmdTEaaCeqSox3D/bEgzSkiUIkhSbhsPaEQpYapox4p6rJift0lCm1Tor1aseH6hj7OiIbyORyH0+L2164hLLabdJve1m3ynPsveaLFZ9EwSc/XsGv5qegOvavfz+tYgn5k4lZ9rV1ECfuQ1ucmfP6JEDZ5c3NTvAe8VQjyM7mH7pyOzpBMD1//oet736fcxOjVKqlJGp0Z536ffx/U/OvY5bTZ9lk2j9dDDgXC8TA5n78cgClBKHRfvx5G+42fSdsUhZK42CXHgNIawqclGfQ/M79UEKWzB3B7T5N+9bUsrast5TWaN9915nG5J99eVh6C2RpcfuyEtFj5ylxtsyAYp7ILJIl2tv6TUPWvdXm1CaLVMCEOKWpr4BU2zthJ7ZsfYMngSg7ajzxm0MpdEep9+VfebRV3KWUbUMu87ZVQ9p2CUO1Merq3WawyaukzqlLTK5hnvtySC2VFNiIU0+aVVbf7bt47r77uZ9/3HnzM6s4+0uJ6p4rnc+tjdbCx2kFIiheRFwzZvPlni9p2kr2l5CAp9uJZFK4EwSYzipVhVsIiVoJNArARTnYRYQTNWJArKjqRqSz0xikCohJkgYcR2cYQgVlBxJJYQnCxLPCLn+RFT/M3YXvZFOUGPleJ747Nc1Rxc9NTZCN5VH1n+NXeE8LhqF0qp7wPfNz8/Clx45Jd04uD6H11/TH8YHAgLZG2uR9Z6ODgm5ydJ0uSYJ2ug349veOEbALjyw1dqpcOvmmbw5gqvbn+s7ltNJ+ow2zxEAHkPeYRT2DJZm3EeE5WpVpBbXmQ4kGpp+7oMmKUhLB2g8WuaKNl+Hi1lG58xy9bKk1vQBC1qa5XKr+RmtMGSqoUQmszQHU+VgDLl2k4jX4Pta2+2zCojjbTKlil5tge2zwPtJv81uZuR6jATM6P6viSEdmiC5V39WNuFsIvcqjQfjMg84zK/OGnp29IEXFdfG6X09GhWOo1aXaGaZtrUcjWZTWN97m6B6+/8CuO7vsPZFUUrTriwEiLKOfkVAl67Bj5/X4Hzk4iauevOyQjikJOchIotacQpL19XWJj8tIRgQ8UmVgorFbSTFF8qhJdid8BSIYlwCBLYmQZ4UhNnzxJUHIm0LAYSiRR6+vNPdu/ircMj9Fk2181M4c4L7P2GUeDU2MdWEB/czeMJ49huNOlhRTDSN8LU/BRhfBDJv4ce0BOLk/XJ44Ks7Qe/nHtZJdHBS1wrgNV9q3vq9uFCqf0JUDa5aWd9Vo+j9y+bJhXGvsIp6n0FDeNNlk09dJW64o5WrmxDghwz7YmCliGIxrF/v7Worl0mEczugXKoG+xJ9D4dE0pfGcl78jpzWv3rLrmqFKRFO2iSKsVA3wjsWHJ+zalciTxYSs3SuK440n10lg1189oUliaaCv0cLO3Xa83oEmjc1oRNFaE9x6aSzXOHtL9bSVrsaNdRKkWYc1MKPr89oNOY5dNjw6z3YlqtgD31mM12h5mKpBUp5qOUNFVUfYlAEKWK9SWbJIVUKjpxSgdB0YZ0qA7NKiIRjNtN/mHXFB/atJGSJRiwHOxUYivB89x+Pj6zk7KU/H8nncyQo5niu1ev5autqWUvVYw6akQNemSth2WwefVmdkwufXf30MPy2D6xnc2rN6/0Mh4/0kRbk2fZhscYNq/ezI6J3vvwCUMlgLV40vJwEbYWT2lmdhpeSStz7VnTbB8Y+45UK2ZC6CGEzpzu53JL+vFpqEnNAcmRMvt083Lk7Giu8IG+z/YMgXRz49mlJd/GJIRtGnGHsutxxupTuOmervtt1wwuGOet/a6NMSYWUvepCUxfmvFV656OLQ3q69yY1AROWLoM6vi6RBp39P1BXU+HCsukHRSoeGl+Ligi2+dv7x/jnc/UE7Xf2Rfy2YdnwS0TzIQ8DFTTBs+p2Vw87FJzYD5M2TzosLed0udZ2FIxFyTMhIrJTsymikXFlszHijVFC0WCKsfEssAjk3X6yjAl26wWVaxU0hYxjTTBbfs8t1il5bJA1EAnIVxSXt5CxkZwYafIHf6TiEw7CHpkrYdFsKTFszY8i8/f+vmVXkoPxwnu2X4Pv3zxL+NYDtGBeoWORQSN3BA0++A6EGzPRAq1nxJi5zs+p689nY9982NH/VgnLNp1o3J1qUOZGW5nbrFv2VKksQlwJ8+2zIgYGFsNY4hrObqRvjWrFatM9Zof1/1daWyitFQevxQvMymaxvnr0Pb0fi1X7yNs6/VIS79mhZk67eZZTsH0sLUgbNJujFNWEc/euDXfxnZ1Cdc25DPumAD5rjaATE0EPehQGtSPa07lYfPda7ZcTVztrDxa1AqbV8rPszmlSVx2DRyfHYkgSCI8S0Easb2RcN+ugE881GQq6HqPpRHg8qwqXLqqytk1ybn9gjgVdJKUZhRTj2A2Sqk6EikFIwXJgCcY8CxsAZ6lp0RdSyBIiaXPLWMBbx4YYYtbppBKpBL42MylCVGq2OgUGE33f42ENWiRUGR/S47fnl/NG/1H939ujwCOQEhaDycSNq/eTNErcs/2ew69cQ89AHdvv1uTi5NOX+mlPH7EwaGJmrS7TFErT8myzlp/FrZlc/f2u5+S452YMAaxCyVHqQ1rC/0wcMryuZ3LIU1M835jMVGxfWNz0eUzVhrUJT/HhLo3JvIypV/OX0PdgwlCLllWJNAAACAASURBVB44kLae1OxbB8On6vOQEhB6X535PMppIXjd6/Jeyydh73z0LvoHT+46V7N9NjTgFHICunDZupRI1wwWZCQ3+2NMWno97TlNyCJTHo46eR9gNxmOA73eoGGSHRLmrAqf2d7hlp2T3LZrmjXJJK9e7/PGU0s8Y6hqPOsM+WzPclFfiJAWp1Usyo6k7AiqrkXREqC0r1onThlrJwSJYsC18Cwo2oJB30IKwUQ7puGczM7K5Tw4E3O6U9KB78ZVTAIiFcyEKbvDkNua8/t5Sd7anueLpZllXypbwiMQZXYA9MhaD4tw7qZzAXofEj0cNjJif+7Gc1d4JU8BniKnyK2btBry0x0/fWoOeKLALRovMWfx7dLObSsy36/u+CjLPXj0VJaMUOxnoXs+DnQzfdTOrTq6ydPhwHK0+3+WJQpo7zTToyYdU4KM81659qyx7Wgur9B14dbH7iG1HAYHT9bnHXf041JTqo0Dnb6wCErbmzSndRk0Mr14mcWIW4LyKj2dKaTp94xM1JXJK21N799DmO07Mj1tccBsbHHHjMKOGpp0AdJ2uXCVJpK2V9DGtpYLbhHbcbCkDm1PAVdCrGA6SJkJEh6uxzRihW8JbAmOEFhC6EquUKRKMFnYyry/GQUkShGlEIrUJIWCZwuKvuKesM5jQcBfj+1lRxAwFUd8dWaaf5ue5HOl5fvWHnKOTLTUcuiVQXtYhBdveTHjc+Nsn9i+0kvp4TjB6PQoo1OjXLTlIj5106dWejlHHmmsP7SkvSS65+jhxVtezCNjjzBRPzIh0E8LSDv3V/MsrciksYmsMn1GzWnjWZb1a6VaNbU9XVpszy5PgLLJS6+ST0smmSFuxuCFOZ612GYjQ6cBrskozRQqS+dgAnl/WxIaA1nT9xU0oL63a0dq/ynWONCESspF6t+9O+7hDcCZJz+Lm6ZGgTAPofeMSqxUbkOyYIGigCzRwSD72dexT9qweN4MEwitJlqOJrTtOf34Redf14ph1NbHjjsL/nFRwQG7A3HIkAt9vuBNJ0sGLZ80dfjOjMeNcwUuGxFMhQmeSEkRVG1FohS+LdjViBkp2igFthSa5JkAjDBRzEWK0VbCKmFTCx4iJuVbM3X+m9+PkiCciFApbg4mSb2IV270aW9PuWO+wR3Nxdd7uxNyXXGa17YGFm6LUNzrtPiz6fXssgM+X5pmwjqEav840CNrPSzAd3wuPvNivnjbF4+bGKEejg18855vctWLrqLoFfcznz0hEAfAIRz0jxBqxRrPO/15fPxbH39KjnfCIItkEoY4ZL1m3eQrjWB2l0kISE3qQUU3xxdMVmhrRpu/diNsGkf+JA+aTxMWS60qJzRC5ipcp67LiZZn1LCu11HUMSqan5PKJDJB8ePGsyzgsCTdZUjmIzvvIQmanHfKs7npvu/p/KWMYGX/x6fdMVnW/j2ZrSUlv9T0eaokNyqO2rmtB+gBBZXkQwbC+Lp5FTNZK/OkBMvlrkbMpmLK2RWbk/2UnY2IV6622NmAJgV+c9jhhvGIZiB4pKFodUI8C+q2ZCaEki0Z8iQTQUqc6GGCMNWna0mFEFqFG/El6+vfIBUO//2MMh+9fy+7o4CfH6rg+yl7VJs1vkOpKKgJxR9t6GfPvOL7c/N8fXZm0bPwP/t2c7vX5JJ2lXmZcGZY4A2toYX7/5/mIP9t+OFDP2+HiR5Z62EBF225iKJX5Bt3f2Oll9LDcYYb7rqBt136Ni4+82K+/pOvr/Ryjmv83Nk/h2M53HD3DSu9lCOHpeTlydikCKnJgDTTillvlFK6/JZZbXglXUrMjG2z5ntYTGyCxsJEoo5rKkBLLJ6SjAPdJG97ZiAl1efiFvV2SxVXx8+JSzZUkP0MmhylsR5KCJv6fGzf7KtpDHIrmm3Yfl7WtT2TEtA1yJOpYQfAnQ/ewvlnXqr/kEqW+KnZJifU2H0sRGxl+8y++zVdRs1UNEy2aPf+wpbJFDWkTUh9vnEnj7nKFLnseqYJSJtAWnx2ooy0Q5SMsWUAQrKqXMSzJUKlXNoXUrUU9zYsRrFZ50WEScTJJYsBTzIdpHhSsLZoEacpibJQSpEgqIcpsYL1ZRs3rSNIedPmCtOh4su7ZrgnrvMCv483DA0xkEhUXbA2UdgObOxTPMMvULOshUxQACXgK8VZvlKc5bJ2ldd1qWwAg6nNW+eHD/i8PF70etZ6WMDLz305s81Zbv/Z7Su9lB6OM9z5yJ1M1Cd4xXmvWOmlHPd4+XkvZ8/0nhOrX832TCO9yG0wniiyZn5EPtWYIbPGCOb1/VE7J2nLRUBJY2Exv8+4+If6sYr9+946dU38srD3rPHeK+2/jjhkIeM06uRDLHGYn780fmXFYU3MbA+EITKWje7KEnq7JNbxTsVBnTqACb3MpjVLQ1q5Wqbv7vs//Rab+lbx/FOevbiPzK9pMutXdXlYGUPerJTpV/W+iwO571yxXxMvIVmk9tkmfSHq6OuzcL6ZimhKva1Z7c82u1srfMIy5wqrnISzq4rNJdhY1mkPCkHVEVQd2FAU9HsSCQx6ggjJWCvmjomQPa2EB2Yj7p0J2dFISIF2onAsgS0EA77FqoKFLUGSINCl0/Vlm/ecWeN168u8fc0wiYLJTkqaCPqFiy0EUgj6XMkr+/v3u7YZnhktP1hw+gFufyLokbUeABisDPLy817Ol+/88kI4dw89HC5SlXL9j67nsnMuY1Vt1Uov57jFuoF1XHrWpVx3x3UrvZQjizjIe6GWCzh/PFgwuFUHbrBPY90kn6lQ2f9pQhqVS+QDA8V+fXt9ny6RtmYMKenThGbpfpctSar9t2uaJv2sHBs0NFnKzj+J9ZdX0I8XAub2meioWePnNqezO1HguJoU2a5JR7DNJKqT991l5cwu3LX9LsLWLL958ZvMdRNQGtb9Y47PgqLYbVOh0twwWtr6MRjrkjQxgwVdnxOeOb5f0ftqTevz77YEydIb5vdpEp1FSPlVKNR4VilivJ2wtxnSjOGBpuSLeyRhnFAPU5JU4UvFM6qSUyo2YSoJUvjWnhZf29WmHimCBGaDhFYEBctMd5ovaZ6mzH84SBSDroUtBGdXChQsyZAvsSV0ErXf0+pIxbCdFyOHbJs+M5zxgLNMjyLw4AFufyLolUF7AOCqF12F53j88/f+eaWX0sNximu/fy1vveStvOmiN/EXX/mLlV7OcYk3X/xmlFL8y43/stJLObJQqf7wPlL7yjzQDoawtdhqA3JitrSMKC1I0rz0l5UDl6pri/bfzAnogYxuM1IIeUyTUzADAXV9ezaVGQfaPDbD0tJqaxYqriGfaZ66IWROWpcphyqluPZ71/K/rvxfnLvpXO4afQCKWf+dB+29+f6z8nRrViuGpSFNwrKBivasJmRpkq8/O66wFpeOu9cixOKhC8vW5+vlKSKBcFDRHDtiCa7PYy3JI402d0+GjPiCOEkZa8dYboFdjZSCLSg7kmYE1+9scfFqj7VFi/MGCni2YD5K6XMliVLESvtfh4nCs3yUsHmoPsFYJ0YgsMoJKtJMzhaC2Shm0LYRAnwhKGMTScFHNpzCY0GHRCk2+wWUUvywMc8/jO3jJ26T88LcNmVKxnyiMsGHlnllPBH0yFoPuLbLmy56E9+997s8OnZ0DP16OPGxa3IX3/rpt7jqRVfx0Rs+ShA9NQ35JwpKXonXv+D1fO0nX3v6hLe7RU08DmFBcUTQ7WcmLU02st6xpb1cYctkZh5CGVlu6rMbKjV9WZZWsfyyVqTiQJOUJNTqW/bzofYVdxaLeO05YC6f5IwDk+dpettMY//n7/5PfvsV7+Ytl7yFuz75u/qaS9EVnwVaXev6ObsOltmfSsx6lyHdWfpCEuZmvlE7L48i9X6k1CQwbOkUhcbkAmG7Y1ZwUi1lTclmLpbc2KgQhYp9kWIOm2EnoVBwGfJsnlFOcS1JkpS4YyJCAafXXM4ecNhUtbGEoGhLwgRcqZAIWknKbKgYLg0w7Z3Bn9zzGbbNhLz9GWUcS7HTnaPSKONLSbUIO4pTlHGg7VBQgrFIX5vnlitIYG8UIYTg+ZUqD3bavJ3HeE2zn3PDIrvskC+cKNOgW9ZtATgxJ8eOM7zuua9jVW0Vn/jeJ1Z6KT0c5/jEdz/BS7e+lCuffyWfvPGTK72c4wpvvOiN1Iq1p4+67ZW1ygTQOZA6dQShUk1ObEMkkmj/SccMYXNxCe/xwi1qohQ0ddi5nfUuiZzIgJn2DA9NVjPbEISexlzam5ZEuRqY9ZQ5xp9NCDpJzL/c/DneevGbOWnVKeyeGtXXYzmyKSz93CQRkGrCmoS6x+xAyIjkgk2KyPvcsoEElUJkMlODhlYRrYGFidKg3eBzcwluOkPoC7ASiEM+O17m4qGEkZLDeCPgrKpOKmil0EgFl60vsW1a4EhB1ZGkSiyUP8NUsa+d0OdKdjYTxjspzupnsK/8Qn4ydS0XrfZwLMm22Yg+N+G/wjmGHAcpUs5wXeYJ8NsloiS/3kUpkQggJ/jP8At8uz7H58vTfJ7Fqu/G4Y0UPT1Ysm1028Gf54NgRXrWrv/R9U9q0T0cOZS8Eu991Xu54+E7+MH9P1jp5fRwnOO2h27j1gdv5V2veBfVQnWll3PcoL/Uz29e/pt8997vctdjd630ck4MWI4mDk5XUkFmYHuwqKknC9vXnmlOIZ9+jIznW9zR5rKZ35vjLz8YIG3dL5f5xvnV/PawvbhEKqROZSgO6K+smR9yAqxSPn3jtdw3uZMrX/xm3fMWd1jolcvKvVkJ2CloNa05rT3eGhOLyXQ2iHAoLBxf6RB4vwpecXEvYNAwJrpNCOYJw0Arbu05COrMdTrs7QiaUcI5fYIBT5Cmij0dQTMRDHtwcsmmaIMrBa04pZ2kWELgShjyLVLgnumQB2YjYqtEIgs4Ep496FF2BK4lmApSbtjd4ZFWyFyk2NGIaccp+5KAyY4u6WraqUhJ6bMsRmyHspTsDA/9h8a20W1c/6PrD33NDoAVIWufvfmzXPnhK9k2uq1nvrrC+I3Lf4Ph6jB/9O9/tNJL6eEEwR//+x/TX+rnt172Wyu9lOMG73nleyh5Jf70S3969A9mOYfvsH80ERj1Kpg/OqqaV8ntIjLVCfLczUUQmtgV+rSytBRZRucyDfz7o6tXq7uHqzWjiVqnjlaaVNc2Zrq02K/Jnlc2gwRFvdZsm7Cpc0gXlm2ZidABk3hgLR5icDxoTEFzism5Mf7j9i9x4WkXsuWkLSz01BUH9HkXakt6zowatrQPLjtmoW//6+H4gNSl33Z9ISoKYdZi+/rxGQlVqSZxjXEzhZvq8y72ge1ogju7m92TE5zmR/giZaodo4SiQMKAFTPdjhhwBRev8U0qAfzXTEiqFCl6mlMoPQT1WCNionAeSlikCsqO4Mw+h/Ulm2fUHJ5Zs7l5rEOUKva2Em7cF3D1tjHuamqVdZUvaVgRri3Y4HsM2jaDtkO/deAi5faJ7Wwb3caVH76Sz9782YO9cA6K3jTo0xjrBtbx9p97O1+6/Usnlk1ADyuK+0bv499v+3fecslb2DC8YaWXc8zjtNWncdWLruIzN3+Gh/Y9dHQPZjlmyrGaf2CuGJT+MH+y06EH3L0xbM1IB5hszqq+Btm0Ixj3/SyGahm7Ba+sVS2nkPunLYXtmdiogiZknfnFpVSnsPiYnTmtKrVn0Z5tJb1vr9yVZ6p0f1lnXt+2NLnA8fVXZHzk4tD4nFlG/XJ1n5wJef+PH3wKN435/1/9bl3KE6Krj89moW8taOi1O8X9z1daeVh9li8KxletxEJmaXb9hbFZEZaeOM3MiKtrjBrYv382atfPrlScWlQoBWEKj7XgukcbXPfYHLfsa7O2ZHN6n4snBQ/PRXx3T4exTsquVkIzSglThZSCYd8mVZBIvd5Ewe5m3lM20U7ocy1Gmwn3z4VMtWN2zkcIAR/cu5sPje3iNib5UTpFU8XUVcSuKGBHGPBztT580aVoHgX0yNrTFFJIPvTLHyJOYq65/pqVXk4PJxj+/Mt/Tifq8KFf/hDyYJmLT3PY0uZDb/4Q8+15PvzVDx/9Ay76UFxGQTrecLDXVnsu90azTSC5sLW6k/m+Zei25FgabA75AIJKcxICWo0qD2uSkvWp2W7ewwWaHPafrLfzqzlhy3rG0jgfRADdkxY08nJqZokhrTwiCvTvhT5DqIS2HvHKUFmllSm9UZ5r6lcJwzb/+I2/5pyTz+adl73TDBE087KnNPFXcWCUs5L+3l1aTUJNsIUhYIU+GDkDBjflr6m0a2Aj7phJ14YubzYn9XOSeeW5BWOjMqCnT9PE+NTpCdPLNvTx7JEK89i4js1c6jCT2nxzQrKq6OBIQZwqpGUxVC7QV3CZCRT3TIfsNaHujSjlvEGXD2ytcfrkPzHcuI0rTynSThR3Tob8eDLgkfmY+Sjl0jU+Wwc8Ll5b4B1nVPmdsyqcM+DwQLvDmApwDG1SMqXkwpAnKUiBL4/u/3O9/0WfpvjVl/wqzzv9efzhF/6QvTN7D/2AHnp4HBifG+cDn/sAF26+kF9/6a+v9HKOWbzrFe9i68atvP8z72e6cRh2FE8WcaDVrOzD83iGX9FKVqHvwNvEgZlILBlCVcijjrrHKpMImsbwdrlm/2BeK2Ct6bxUKKyceDl+3geXJsv7umXbLqfAZMkImXlvZrhru1Dqzx8jFv7RxMotslBSdUv6mhT6QDjGHmQO7KJRv/TjvrbtJj76g89y2fNez1knn63XHbWNt5qdk8JFx+xCRkgzU1+3mCt5ygTNt+cWP6ZT14MWrRl9Xxpp4iZtk02amQIL/b1T1wd2PNbWtHfbI03Bwy3JdCchcUpcvqGPidQnSBT11GZ3x2Jt0WJd2cG34M9/OseXtrfYNhuhFPR5FkVbUo52MdK6jTUFmzVFm/F2zFyYsqcVs6+d8OxBl2FPUnI0Pao4kheO+ASp4sHZiKYdEJhSty0EviVIvYjZZEkW6hFGj6w9DbFl3RZ+99W/yzfu+gb/9sN/W+nl9HCC4ro7ruPLd36Z97zyPZx98tkrvZxjDuefcj6/eflv8oVbv8DX73oKI7rCpv4wPEhE0TGNhVJuLf/9/7b37nGynlWd72+916rq675l7yQbSAhMmA0IwQxHBZUEdECRMOfMYBgOQzhoxAER1I8GnRlR0UEBIeMlEqKIx5igXCZh8JJMCANxDkgExGQnkJB7su+7r3V7b8/5Y62nnreqq7ure3d31e5e38+nP11dl/d93qcqu35Zl99aMXpbEmVWEPXrgjQisvywf6ozT3tqukoD2dOWzPM83S3oTCGRqCZ3P7YXxV6jJPRALLKCyKVKfUlvhjWO9DXnpDli3l1PkS0V3knTzRbNpaA/jKXrVASkH+OGO27AkzPH8IE3fRCVIOyOHNo963dOwI2SMuAUbWOGz2vTo8u+F9IhakVgnvLEBj/kazWGj9FTv1hPMrxwV4D/YxcwHRiMxz7GA4Op2EcGH/csEL4+a1DPgbtOe/jm6QQA4aKpCv7fR1J8+pEGxkLuFvWIJxiEBb//xgD3z2W44duL8Inw0v0VHBwP8OzJEAeqHg7WeJQVALz26TW8ZH8Fuyoe7gtP4qmihSZyPG4a+AZmUPH5uio+LdG3G4GKtR3G7vHduO4nr8PM4gyuufGaYS9H2eb8yk2/ghNzJ3DdT16HvRN7V3/BDmH/1H783lt+D0+efhLv+cv3DHs5ZxfxRKlBwJOh5CsIz7TFkbH2Iqfg2otcA9avqSGosBCs7RqsCaM5yxEiW5tm+kRX7OSCxiwAwxExO7bJ1nhZcRdE0uggI6Dqp4Gk5Y5T9mIrMu7SrJ/kCFpzjgfQzzzKUSw7XL3I5HVyjqyFhiF8+Lbr8LQ9z8D73/g7oNYcj4HKZUh7a8HVrvX6v+Wp1MJNcGStOQucesjN+qxMoC/VaWD8HGDvs1z3qh+LWbABTNaZFcpikeemBkWCuaTAXEaoJzkmTFtEaYb5doq/fryJTz3axD+cSICkDsrZ2oQqE3jZRecirUzjOwspktwgLQADQupxh3BhDB6v59hb8bC/yinchxcy+B7QyArMJgUij3CqleNFeyI8ZzrEebUA/2Kvj2LPPL4WHcc/mhk80UphjMGVz6zhp58zgZ+8eBznVDZWXqlY20HEQYyPvvWjOLDrAN56/VsxW58d9pKUbc58Yx4/df1PYe/kXtzw0zegcqZzIbcBY/EYPva2j2GyNomr/+hq1Ntn4Oe1E7EpxrQJ1I93z7tcjrTlomlpc3lfs3Idnxe4Iex2KHm5QaDM5H5g8rylM0IBiQJOANPns9CsTaPz1WsjeI0Zvo7yoPlc6rbCSFKbfb6u84RfYwwLRduwQR4fe/EER1Hrp92xC65Te+Dxe/Abt34Ar7n0NfiF1/wCOqLRyCgvux+28cHiS12bMVJPN+meH1Q5Gji21zUelPe2Mil1dftY6OUyhixvu+uzYlnMiqNKDQ+nFdy/6OFIQlhMUkwFBWKTYLHVwoMzdVCyiN1eC8+dJDx/d4inmgaHdkW4ZHeI5+2p4VgScF3aXIrZ6GKcqr0Q98wk+O+PNtDKDX5wfwUXTwWYCAmFAebSAnceaeOuY2187VSCJxs5piJeH88q9VCAMBF6ONHK8alHGrhkT4xzq7xPY4GHl527sf/WqVjbIRARPvimD+LSiy7Fuz72Lnzt4a8Ne0nKDuGbj34TP/PHP4MXPOMFuPbN1+7ohgPf8/H7b/l9XHzexXjbDW/DfU/eN+wlnX205jmK1JjpTktuBGnDjX6yFhOVSR6gHo1xxKvX2qM2zbMx47GlUSUiV0hvX2enGYSVUkSuYJHVWmAB1l4EFo676B9Jt+ggHbzVKRaW1SkZUn+Mr2t8rxNBIq5u/uKf4cYv3Yi3/vBP44e+58clpVy6vtpuOda0W/v4Pq7980OZqCBRzXBMGhmk3q3X1qO9wPVxRcHRxTAGvEhSz4GrAYzHgfH9wPTTgXgC/zyTds5Nno8oCHDuWIx9sY9/mPXRyoEfOFBBMzO4+1SKe2dSHKu3sCuQdZkcT7YId59McMfRFk7XvgtHx16C259q4YlGjv/zghrOHwswkxR49mQIYwz+x+NNpAXPCK1nBvfOpvjiUbb0CD3CbFLgZKvAQwsZTrULtHKDqOdjEXkbmwzVcVM7ACLCr73u1/Bjl/4YfuvTv7W19TGKAuD2b96OX//kr+M9r3sPfvP1v4lfvumXYTb6i3bE8cjD+9/4flz+/Mvx7hvfjS/c+4VhL+nsZbXRTOvFGDfzstx5SaUbYsjfocjdSKnedVWn3eSBheP8Wj9ynZ9BDHhjIhBbHNVqL/Jr9jyTn5+2pWOzFKlJ6lKcX0iqMy+lgqnnN1zEz6YY66f5cZPjP9/8n7Fr8hy8+eVvwaRHmG/I9Vcm+ae8J52mBvB6G7MiOIkFV5FyvV11mtOlcdPV02VtNtgdP4c91LIUoBY3fAAsKA2kuWJM9jXFl0+lONZuYaIa4lV7cjxnKuSRqwHwwmkP//SUXKkfAH6EHAbtIkGjsYgXjBlMRYSFVoZfvb+NY/UEL/nXLwIA7Ik9PG9XiGdOBDjZKnC8WeB4M8FnHmvg0cUcF4wHmIoIjyxmmEsMPv1oA3NpgcvOrfBEhEWO8B6oevipi1mYBgRkhtOrXz25sd6BKta2OR55eO/r34s3fP8b8JHbP4KP3P6RYS9J2aF87M6PYe/EXrz9VW9H4Ae45sZrkBeb20E1KgRegN+96ndxxb+6Ah+89YP4i7v+YthLUnohAipiV5HUOXpnrTqyhNN6RVbyQBOsB5qdVMAH4waI8f0ACmdqS9ajzHDBv/ifIYiAelu6Osc5UledZHGUNmXKQCApz8IJmrDCoqfIpLGh4FqvsNLtX5c1AX8cyHNpNHBqMy9y/PzHfhbv+Q8fwvOe+/04XL+HH/AjNi72Q46K2fFRySKvq7Ug91f4OhL73IbrvrU2IOUGhmQRyAK+puasTHbgejMWn2Kqa01yG6fx8CIQjE3jqvMqYnNSoEoepoinMPz9sTZ+5MIaah5wOiH805zB3jjBi/cEaLQIRxMfLzp3F/7mSRZQYb6AN140hpfsj/GM8RCn2hnuOppgRiJmBGBX7GEq9HAqKDCX5MgNcNuTLXz+qRZ+4uJxfPeeCJkxON32OhMO5tMCdzzVwkxS4FR7Yxt4VKxtY6Igwoeu+hBe/d2vxu//ze/j/be+f9hLUnY477/1/UjyBD/36p/DZG0S7/jjd6C92TMhh0wlrOC6n7wOlz//crzvM+/DdbddN+wlKf0Iq24ElB2KXja1XXZWqHQx+qEIuzanG2u7xEg3ZtETVtERSbbBobaLvd+MFXRwA9O9UKJVMhjd8zn9WD/p0qFeAHgiKP2Q68WIOBJWlPzi0parZQsr0kggj8cTaAQRfvUvrsErf/0LvMaxPXycImVx5cdcl0ceMP8UC760xdc0eZ7rpJ1/itcQxmIuXLD4bMoM1rTpbEYI/TtzGzO8fjsYXvYlby3isXnCrmkPtYCQ5TnuOsqvfWghw9E28JxahPEiwWXnePjh8ysYj3zMJwVS4+H8isGrzo+wq3UvjCF83/4KzhvzkRuDvRUf0xHhhm/XUc8MXn5uBd+1m8XpC3aH+KtHGniqwSJ9d+yh6ns4PJthf9XDRRMBZtoJcgNEYYgHixhAAmCAWso1oGJtm3Jg+gD+8Cf+EN990XfjvZ98Lz56x0eHvSRFAQBc+7lrMdeYw6+97tfwiZ/7BP7jR/8jnpp5atjL2hSetvdp+KOf/CMcOngI777x3dszomYNYbOEuxLPRshjAWK7OYusvzluL5E4/NvO0VhSmrYpgQx3SWZtPrb1IrNCqTnLoiSscC1YKmnDPAcmWkAwIWsq2DstqLDz/+IJPlZz0B7LKwAAIABJREFUzh3P81ncAXy89iLYdLbGkao8ASYOsEgqcrH3yDrp1aYpcP+T90v0T1KT7boY1u7hmZ4Ad3LOPOaun8ARxFSaIuqnAU8iZmmz2yAX4Of4MtpqYj+LwXbdiTY7SSJPXBTTC2Cq07j1OCFFgfHA4KuzHr5WrwBI8OzpCg5OT2KRfJBf4N8/cwwP1oF/UYlwcBw40M5xOiF8Y6bAeHYEXtFCVAvhk0FuDBZTg5NJgWMSIbtwwkkjjwjPGA86Ys1adADAbLtAMQb4xBMR7m8EMlqrIvNgNy5zoGJtm/K5X/4cKmEFP/3Rn8Zff01r1JTR4k/v/FMcOX0EH3zTB/G5X/4c3vEn78CX7vvSmR2UiP8v3rqyD5nLn3c5PvzmDwMA3nLdW/D5ez4/5BVtEraWKoj4i76ffcUoE4+7FOfCMY5oFenSL9qoxtdn03VWpIK6B5vX4NKV8ACTckDN1n2V68uMYZFrB7WHVRZZvu8EJIiPNz4uQqtggWjHVPmhTDgQv7kicWnHyrirVzPg98p2vNrj+xGnHpuzKEzhfNCKnJ9fnXbryUpdtV7A57ENGWmDI3B2nFTjdHcK1FLbzSLNj1io2QkKaZNr9SbO4WO0FjiKCHTW9FDd4A8eDeFFNRTGAAGPtvJr05KmNSA/gO95aFKEpiEUmcGxZoGJwGAsAMjkqKXHsFAQqhHQSA1OtwvcfcLVG84kBSZC1wh1uu0+C081crTzAk8fD7CQGtzyWAMPLWSoZwaHm4b3zNYxbiAq1rYpM4szeOv1b8WDRx8c9lIUpS9/909/h2+/79v4o6v/CH/29j/DtX99Lf7gb/8Aae8/7oNia3gAGVmzSTMnVyEOYrzjR9+Bt7/y7bj38XvxU9f/FB4/+fhQ1rIlZG3+ss3Ts0Ookc8ixs7aDGI3kzNP+092CGKXerRpxg7iCRaPu+7P9gILkSJ3USor0GyDQWevDNedRTU3pD1tcGSJyEUr0wbvs8mkW9VzfnBe4CxJyobHQZWjfWlLzHIbLGrssHjPF380z4mqImehVeTOeDhL2E8ua/Exqrv4OEXGgipPeR3NGWDygNTaNZYKNdvVaoz78SMgkTRpIF2yVqBa7Pvi+UBYRWHPF1SA6hQeXChwopVjXzVEUQC3H2lj77iPdhHgVAp8Zz7Fd+3ygaJAmC8AMPjCyQLPrmaoeAbXf2sBdx5x5Rh/+0QTLz+vgqnIwwNzGb4156KsF00GqASE3AChB/x/x9t4rG7fy3TDI2oWFWvblNf89mvQaDdWf6KiDJGHjz+M1/7Oa/Fb//638K5Xvws/8qIfwTV/fs36rGXKxqhDcud/8bNejP/6hv+KZx14Fm7++5vxXz7xX9BOt3dNHpu+1tHdIjnCxGOSaoMTMFPTEkmqlqJiJfp9tpK61FOV5oDG4x1/MAe5tF4ko5+MEesRm+bzXCoT4OjZsftlgoFE3oikqL/uphv4gbxOxjaV126PZScvNE7zuRspizwbUQNJzZy8jjyJLuYsHpsiE5qzfF887l7fmgeKeY5IAhwZ8wIn5Jbso3SWju3l68lT7ig1Be+R7wOZNED01rLa6yjqLiJp+D1L/Qg3HwlxfpSjmQY4frLA/nAODxyo4oKqgSly3PpYG83c4JXeBHIEaDbq+GaDmwLKQg0A6pnBrY/1mXIB4Pm7IhhDOJkQAMKh6bAk1rApQg1QsbZtUaGmnC00kybe9afvwmfv/ize+/r34lO/8Cn8+Zf+HB+49QOYa6yhBipp8JecHfGzhewe341fvOIX8fqXvh6PnXwMb/xvb8QX7/vilq5huIy4UPN8FyXq1FAZiXClzn6iXOhfJk9ZrJDfHbFNS//OZq3+0dzxvSxE0hYLGDv/suOzZr3YTLcpr+2cBDhSV54papsVvJC3vn7aPTeIWVAZ4ghilvB5w4pEq0QwVaeARBoIjOFr9GQ2aGUCSAOZ+nCqZy9l3FQYA3nFpUtBLsWbpxxlK4tWz+e1JXVg9jExGDZAXOXrCCJea9aUKGG7+7U1GShvRRoFQDTBa81TZLnBo3J5yFMcywt8+kQFUxHBa85gdrGBH7tgAkQeIjOP/VUPj9dz/M+nmthf8eB7hCONnN1DwhAvOVDDlJfh23MJDs+662hkMiJL0t4NrDMTsEZUrCmKMhJ8/p7P4xW//gr8/I/9PN582Zvxb178b/CxOz+Gj97xUef9tBpbnPqcHpvG1a+4Gle97CrEYYzr/u46fPhzH0YrHU4KVlmGoFSrlbWdLUeRcUqvKDiq05yDc+OPRWQ1pQapYGG3XF0eeVL/NgYg52PlqRuK7ofAzONAfMBNRMha3enY5T43WZsjcURcZxbE4q+W8k9U5WOFVWDPhfw8Y4CFo2J0S24SQbl2zg61z5oSvfP5xys1GfRifeCKjIWXjRbyJkgzQx+LEzuFwRiODgYp7091moWffcxGCctdoiQRQEDmiBZ8fD/i2/G4GyNWP8HXUN0NiqvYWzXw/DHs9dq4aKoCEKEZnofjiY+PPJThpXtruGSXD4QxnmgYLDSbuOz8MUQe4bF6jgvHfTQzg4fFV+2LR1uYqlVxTg14omnwlZNbk/pXsaYoysjQaDfwG5/8Ddz89zfjnT/6TrzjR96Bqy67Cn/y+T/BjV+6Ecfnjg97iQC42/qNP/BGXHXZVahFNXz2Hz+Laz93Lb5z7DvDXprSjzwBjAgK+0VvBRcB7HuWdqcCbdG/H3I0J6qx6LNF89aOwlKZZBEztsdZVCyedHViadPN27QCyqYb7fODCF0D4i1USmkCLNw836V0LWGF1+jb+ZoVFjC2S7QcnXMHL/02zn6kX+0ewNfQmnPWJIXsWTzO0a4iXb3BJ21yVNIL3D6QB0Qhp2vJ40ioyVnYmYLXR8T7Hk+K9UedPdu8QOxQWqy1K+MA+fixcwwuqiRAWiBNqqCSgCw8H9VqFZecI/NTQfjBczycaFZwXpUQeYQ0JxxJgXNrfkesLWYGNz0ww81MMEC7f7p0o1GxpijKyPHAkQfwthveht/7m9/DO3/0nXjnj74Tb3/l2/H5ez6Pm//+Znzh3i9suaFu4AW4/PmX4/UveT1+8Lk/CN/z8dm7P4tr//paPHDkgS1di7JG8pTTedZLLTZcK1VkHGkKq24Wp8UYF6Gy1hxBLGlUSQWaklCxBfumABvhFuBpASdc1MymEO2szcoE0BbjWDuqyg9d6jGIwQa74/zbChKIXUdrgUWk9U2z1h9RhQfA29RsapypLuCMdgF+PIj5dYXMBW30CNFePL80azRlI9ygAmR18ZVbXFpzRgELvMZpdKKXdg+tUC6LsrA05D0Q8WmbEuqnOC1q6+JOP8ZRwrTVOfa0l+CiMOdUb54i8gkLSQIvayIsFnCqVaAwBAPDIs7zUfUJRZZhoW2wpxKgSiyOrW1H12djkJm0G4iKNUVRRpb7n7wfb73+rbhg3wV43fe9Dv/ue/8dfvgFP4zjc8dx5z134s5778Rd992Fhdbm/MM5WZ3E9//L78fLnvsyXPa8y7Bvch+Ozh7FH/7dH+ITf/8JPH5qG3d5bjvKNWGSlrQTCcpRJE9mVLYXXI2aH3EUqzWPzkSDTiF/wGIvS9igdv4pSeO1RcC0XESsOu1SjJ3uUEm1mqL7/sqkpGJLxfp2HmfnkkToVKb4+hZPADOPdqcc7Xoz4qkIYc3Z27TrwNhusfFYoZvX7kkmg9eTJr8ulShjngJNqcWrn+pJYRJHHHedL2nOvUDjJEfTps7nc6ctN7zeiuep88SKRAbU27euMsF6LAidX11ZAAJAaw5J5qPIqvACjmKaLMHnn2rizR4hpQnsjT28/ECAu44s4qV7DCjJ8fVjPPvzO3M5kizHvTMpvnSsjUcWB/Dc22RUrCmKMvI8cuIR/M4tv4Pf/ezv4vLnX44r/tUVeOUlr8SPv+THkeYpvv7w1/HNR7+Jex+/F4efOIwHjzyIrFjbP7ChH+JZB56F5z7tuTj0tEN4wTNegBde8EIEfoDZ+iz+1+H/hVu+estQono7BvKc0GjNLU0HnilpQ6JfZvn6MHt+a2EBuAiVnW6QNERMRSxYTOFqvbwKi5l4zNWBNU5LOlLSn1niGh3snE8bcWvMACDxNyulT61o6aUyLQPmyXWadqJsC1w/Vp121iPWU84Oj7e1aeXmhi7I7UlY5WupTMj1erzG6jRHFhszkvaN2U/NjpuKqlLrl7n6v8qY87hrLwL1FKAKMFEV6522sz4JYvG4W+TnR5LuTZsy59Rww4QfdhqNGlTFnXM1vGx3Bs8L8L9PLKIWxTBehWWd7+OZtQK3HqnhcDODnydYWFzAd+0O8fzpCM2swJFmjiON4Qs1QMWaoihnEVmR4bZ/ug23/dNt8D0fl1x4CS573mX4vou/D2/4/jegGnFdUpIlOD53HCfmT3R+Gu0Gnr736SAQ/tP/9Z9Qi2vYN7kP50yd0/kd2g6vdgP3P3k/rrvtOtx5z534xiPfUIG2FdjCecCNRdpIilzMZJeDXHqwt8A+iN1wdypNLQhjFgxRjQVaOdIWRM6MNpDIVFG4OZ6WmAeBw+ScKiykbs3z+L7ejkxLKD5qUY1FI3kyJL3tLETsRIBCZpFaw18rAI2kSOvLdF4TSntCfDxrvZGIUe74PhaMtT3A8fslEinXZLtQ0xav6+TDfL+14vB83rNoTMZsBSxgkyaLOz8Uq5IqPzdL2Hw3bUpUT17jRyIS9/Be5zm+2S7wz4/WQTAo0gkcHLO1ex4QjWG2lQFehkaWA2BBeKSR47IDHjwiPHvSw57Yw8cf7KnB6/XO2wIGEmtE9Ah40FUOIDPGXEpEuwF8AsAFAB4B8DpjzCqJbkVRlI0hL3Lc/Z27cfd37gYA+J6PC8+5EM992nNx8XkXY//0fuyb3IeDew7ikgsvQSWsYCweg4HBlS+5Es2k2RFyDxx5AMfmjuH+J+/H4ccP4+HjD7Obu7K12LoxoqU1T2vFD7unBQyEkfqraJUiebGH8UuRNWsd48GJDSKZGiBCzZrX9q4pa7uB6IBMHTAcXWwtuI7S9mL3a210yRbiE9jOAsT3+ZHUs+W8rsXjIurgPNOIXGdo3y0xEhWMWJhVJiUlG/H1Jk2JVsKd0753puBrqExJyrJgq45W6ro3PU8ibplbq60JyxO+xqkJ173bni951tWAWg40ZRaqz40F7CEHoHkaprkAE0SAF+CJloeZ6vMwnj6OJxoF/ueRzEU25XO3t8JCzbI79hEQkNksaxBJ84kY927RtJS1RNYuM8acLP19DYA7jDHvI6Jr5O9f2tDVKYqiDEhe5Hjw6IMrTu24+V03AwCu/NCVW7UsZS0UNooknYnrJZ4QiwezNIq1EkHMkSqgu3MyiKW2bcGlQe1zOgPYC2D2cWdkmydAaxYY28ePV6eXDi232AaIPOVxSzAsZprzTvDZc5Tr68jj9eYZX6cfcNQprgHhPhY6SV3SuaU9tVvb21BRhoiPlSdupJRda1J31iFBDBz/Ntef5QmQLADwgJknpOi/CfgVF2XsRKgN0DjF47GCKgu35qwsrrTWrAXMHRHDYVt/J7NWpYsTfsgp2LQJTJzLr0tbPF2hvQhMny/zUhtYDA9iMX4G/uqpW4BmixtNAknl7noajhSLyEwbgbz9R5u5E2qAdN+SpMGl87a5+TNxzyQNegWAl8ntjwP4AlSsKYqiKGfMGZrs+oEzn/Vj9hEbBC/ouZ24Qn8YoF6aOgAsFTjWyDaI3bxLk4tFR8bCw/NZ0BXp0jSvtQnxfK6vs80NnTWFrmkB4GNboWDTiZ0atEDqygJOW9rif/vaQPzKWgvgKQw9RtLVaRdxKqdhU/Fza85IRC7gYzal1q4yjY4VSnOWr8mk/LpWvTsS1ZZu1rQhQlPmjfa+/72Gw6F4u/mRpFibfB4vANK6sw/JE0lJW7FpXL3ezKNu/61hrxdgNq/gU0828fzxDO0c+PKJnghv0uTzeyFPU/B6ZBR5LAytGfEGMahYMwBuIyID4CPGmOsB7DfGHJHHjwLYv9aTX7DvAtTiWuf/djebQwcP4fATh7fkXIqiKMomEVZLEa4+wq69CEwcYMFWGQPq7cGia2mTBYOBi4J1ateII0X5KrWLQew82sjjiI8fsQVFPMYCgTx0LDJspImkXs52j1oRlif8vGiMI0C+2H2kTTGlHSulEGX01Ng+jrYtnuT1TuxDpx5v9glnYWL3Kk3k+kIOagUVd93kuQii53NtmikA+C7KZk2HyXPp0s7rpaEjqQO5CC47HzRtuEHu1v/ORkWzNneGThxg77rWHK8dYIFn98bOTq1OsSFxdZJTwn4GTEzw+5G1gdYiN0aEVRw6cBFufudN3XYhfuDSuUXWidq91Qtc2tgUUh8X8mvstJTyZ8uTJhIYIM9w6OC/3JCJQoOKtZcaY54konMA3E5E95cfNMYYEXJLIKKrAVwNAH7tjNZ6xhx+4jBu+eotw12EoiiKsn7sOCWABUE/v6tcxih5AaRCfrBjm2JpSqu90C2IVqV0LiJnuRFX3JiittRfReMuGgfwdfkR15ZZvEAaAlIAUdeZOtGrzvrBgrDI+PkmAzIZAB/EIgj9pWsEXKcqwGIpbXJ0rW1noMq1BRVnQtucFYsQ8WcrciCZ5eNYsZu1eHQVkROXVmzZtG7acsLJpnyDmH+mzuP74nFOWSaLUssWO382e02eB2SpNCVUZWyWrCMIgcokbrnvf0vnrQ8Yz0XyOlE2iUiSNUiWPfFCvs5y44npUxM54EdtrQwk1owxT8rv40T0GQAvBnCMiM41xhwhonMB9LUWlyjc9QAQ7fG6BN0jJx4BoPUjiqIoyoB0pR5XSJd2zG5X8A/rB3kuHWkFSNoUkUGrF5RnLaAt0aiO1YZxS7VpOwOOlNnHbcrSFNJgABYbNl1ZL9WdLVf7FlZZ+FgR2K7zeZpzQE2sLcb38RgqAjpF8oDrzrTRvUiigOJT5mrzjAjQgNdmDXvbizJBYJlIZ1/kuTZdWJlwosh2e9r3Lk9dN2prHl1jv0wuQ+VlXWFVvNl8jjC2Fjjy5vm46Wt/h5u+/BmOyJlCoptS+zZ9vrM/mT/C7084BkCib7bz1K598eTSVKcXuDRonmxY5nBVsUZEYwA8Y8yC3P5hAL8O4FYAbwLwPvmtIStFURRlc7HGqeQtL1qA/ma3lUnpbpxfPi1qjWuLzDn5x+Mu/WVtMVbCDngvn7N+ioWEHVLuR0Agw+VtVMl2aKYNdNKSgESCvNWFou2+bM058QTw7eokH186I5d6thnn/Wbr0jrGuiWhlrcBf0ysNGS8VHmm50rYTk3yZBqD1INVptiLDcTHS1suYnr0fmDyHBZrYcVF/XoFYLkJIqxwOrU5z3tZneZrb807CxFPGgM672VJBOeZpEUDvt6kKesDH2Ol98GOFNtgBoms7QfwGeJQYADgL4wxf0tEXwXwl0T0FgCPAnjdhq9OURRF2TlY37AscQPH+7EeWw8rLgCxvOhXR0TO583O4wRcIb0p1halq04D4+fwF/j8ke6UZZ64NKIfsV9bkfIUgiJznZzWf6yfz5/1fisyPlbWApqFExYdDKcH7fB1AteBAfy6InfTEkzB3Zl54ox+4wkWT5XSSK207fbGFE5grhTtDKV7kjwWj9Pn8znydkkgkpvqYNO5toEgGuP1+zFQkehlu75UPKctjojVpoHJc/kag0iG0E8C43s5ndrqSXk3ZgC/DlR3sV+brUeLiaN2RvZ2ufT7JrKqWDPGPATgBX3uPwXg5ZuxKEVRFGUHEtXAdVFijruhRsQkthptF0Fagvh72VmeltZ8aezTGjpVK5NiIVJ0i7/O6QqO4tiGBDt9wI9YzOSpRPeWOWdYc+LGD8VIt2QQG4mtx9S54gnXEs+02NVeWVE4cYBfYwoWM1ZE5gmnVW1ksSgAz7A9SJawuIThx8Z28W0rAHux+x6PA17MzR9pS7pAM/Fcg4zQkuvPJUWZZ7yHkXSBevZ6I56/2ksQuUYOOwC+KIAKpHM2EmFetjQppEFEaiIzw9domz/8iK8rrLDY6/dZIKmR3GCfRp1goCiKoowGWVvqzLKNF2pB7GqqVmoUyMTstmzuCrBoWStJU2qwiqWpM1uPVmTOYNem2CpTIih8EWHLnDtrs9ApchE1cAXuQZWjgIFx9h+2WD5PAFN1t72Aa7ps52c8zuuKJ1jcetIpScSpRVsPBzi7DdvAAPFnKyRyGY9LJKrOe9s4LdE6AEbMf+eP8WvzVJ7vA4HP4p18sQUxnLqNasD4uKSLW8t7nFnfuaTOjQmpjMFqi3jO2hzFDeJuQWxyiaT6LmUd1cR6RaZS5El/oeYFMpqLJM27zEizdaBiTVEUZdjYonbb3bZTaS9y9COM+Quy3yxMQKJGEtkZyEHe8I+tC1uJqOZGSdkZm9YUd62+WdaUtV+dmxVQXuDmW9r3PmlwdCeX7sParv7XmjY4WmUjSPa1BmIzYVOYdb6GpC4dkg10ZoPmKQsiO1nBFCzIPE9SfzmnTMOa1MItSGpQonZW+GZtt29W5Fq/OUtr3hkfpy1g4ZgMgxdBFI3xnjXnOLoXT/Dz/ZBfY+eE5invmcl5okE/sjYw8zi6DXbbnI4GnI+c55f83SBNGUf5/Wkvus+AfW/IW/6/0XJHbRCqWFMURdlWdIraS8PDdyqRpPaiwFk69GKjNZ3nDBCFa84ujZb1oyzmirzUkSm+aGupWbN+XZ7HDYVlbD1aliw9ZtZmL7VCUqSda+0ZVeX5HBEDuaJ7W3PXlOkJnuwRjIzA8viYhQiutMmPFYVEHTNg4YgIVEmJWqNeQIReT0dqNOaicM15uR5JG9rPdXlfey1HABndJNGvUKJddqapTe3mEplLmyLW2yu/n2GV98cKXevv1prjc9mpCF7oUtB2goIfski23aJBvHpTi63zMznv9QaiYk1RFGXY2LmMy81n3EkUqasNWi6CYdNua5n9WeRA0QRA8qVddH/xxuPO7b45B1i3exJPMOoxxfVDV9tmv8x7Z3+GNTe+yqbFiLiA3bMdkQmvx6b5ABGINrqXS3DIdF+rjS7ajk0v4ghYZZonNuQZi4aszeLMFtk3Z0v1ZyJO/Aqv016j3Rtb/J/U+TzNmaXpv6AC1HZLl2bghFFVrEIMZFbqAMawUQ2YOijnOg3MH5W9ElHanOX3Pm0uFU3VafGwq7uU58Q5fH+WAu1Z58EWSM1ZY4aPG48BNMlrzJpOmNo12QhlEPN7tnC0//rjSd5zY9Ym6gdAxZqiKMqwaS10jxHayTTnJCW8QsoxaThhtNbRVPF4adZm7sYslc1Y21KEPzaNjr9WnpRq3YjryuxIq+acaxLwAtdl2DGcleHfjczVogEs0sb2ctG8NZ9Nm+51AK8lnnD1UM1ZZwkCSAqzzhMS/IqkEysc2WnOuuhk1uJrsLYS1pPN7oPtfLRirLpLnPrB0awg6v+eEDnRRxJFq+12ViFpa+koq+WoiHCCAVKpZytEYFmvs350pgpARKPtTBUTYC9zKeVIhtdHFaDhoSPex/cCjXlOqzZOOREcxHzsyqSkeqPlU6H2fbMedmc6Nq2EijVFUZRhs1o6Z6ex2qSAyqREO8ZlqPda6vxM35tI287M1H5J2yfZQvO1Ht9GpAIRHjbCVeQSRTWlovzQva614Ira89Q91w9FKMCNRkqbXAvm+UAoqUI/FBuOnDsl7dxMG92yUaiwwtGlPOX6sTyV1O8kR+lM4WrUjJE15d3/U2H3vl3n89lGhaQhka6FwWv9sjaLST+UdKqkZ4MInXFX/QJWRcZCMoi5MSEel1rBVCKDLRacdkZ8POlem9smjYL3z9RcdCypi0hNZYbqKh59rXne002oPVWxpiiKopxd2NmUZcPWQWnXXeF8ucsykaHcRK42yX6JL+nGNC6tmLXFcHWuFO0rn2/RdUraAn5bl2jHJBUFR3Tsa+0Yps7ami5FawpJmxI79DdEgNnC/TwBxvc70dZbL0bEtViw0xgkAmRFmxWFtmHA3je2l0Vj2u4Wa2N7WaCQJ+ljESlFAbROdVugrEZzTiKAmdSM7ZZB8W2OLtZ2AS2/v+lsc4avmzzZq4TXYq/Lpszrp4GkDRjxnPMjEWLkjHOtVYcVZ57P0wrse78cm2SIC6hYUxRFUc42WnPdQmJQKhOc3kwbYupK0twhtWi+fCWGVf4ir5/qfxwvEKFWMqvNEgD90n2GhYQVQF0PLddQIuuqSv1Z/TSLmMoUCxhbDF9kTlzaiE5rQaJRcf9i+KDqav5Mgc7+BbEbYt+WJoLmDIuPyjQ/J8/FGNfjPWgvuIkEgPjQyRSFfiLadoYuV6Rvco7IEUnjBJzItddb2+1qx8oiOh7nxoQgFl+8GJjYz+/TzJN8jKnzgOmn8fmP3ctrzNos6JqzbrJBZQLO+HfjUplngoo1RVEU5ezCmLVFbIBSOhJc+J80+IvcCjQP6OTJljXNBYuuiQPOH61+qntOpaVs6tsb3VqNIBTz1wCgKoucInO1blkLyAsWZVlb6ssCXn/9tBT0L2NpUqT8+qzdPSUirElk0WOhtHjcpfLyVISx1Kd16sOqLOgiifr1Ck/ynSAMqyyo+IFlJkgIVox6gUxlmAPippga5zxdoLqLU7zWZ81GQ/OUU6jVKefdFoS8d+P7+Hc0BlR3i6EvukVfeczYCKFiTVEURdn+mMJFlDyPv7Bt5ybJ3M08AbvPryCsKpNSzxYDTSmmtwaqNgVWnZZC97YYuq5CEEuDSVMGgIsBqx1En7WljspGplrddX2e5+aZrkQ0xs9rzAJ2SH15fyDpv6jGwqo1z9cS1aSGa5FfG8vYqaztrrv33NY3rZz2tSzTJ9BFY0Zmj4pItWJsfMzZdlg7jU7a2Lh6wCJ1jQ2NU5LiXHDju/KC38ukvrqQJo9/1uqzt4H0u1S6AAAgAElEQVSoWFMURVF2Bs1ZsZSIXAG/NVsdtCDcFp57AdeZje9zhf+2OH5sr9hgSGfocscmAuIpnmGZSkF+dlJqq046kWNf30nLllJznUkHEde2LXcua/Vh6Z292poXMSIizJT8xrxQLD3E2b9xunvP+omYztQEj21FTCHeY8VgNh7l48bj7ngtaWTwou7mElNIV3Uk+++x6E0XOK0LAKceAuYeB4xNs0ot4XJTEACxDdnFzxvUgmQTULGmKIqibD+IOFqVp91iIs/cF3/5i35QUhlZZZ3zPc91dAIudWdr6lY6dljlOitrG9IroMqu+TaKVGTdtW9e4Cw/lquvsp5wtpnADm63djGZ1GblCVB4zngWEHEiqeG8dO7lzIqDmF+TNgBPhsxHVfFckwL/3rWVjXut0Fo87p5TFIAPfrw1C6RSJ1dOpQYVGWDvSWRwijs9MSZRQhFkWSrpZJvyXuW9t00n9vaQULGmKIqibD8q1pTViG2DHeVUl2L1AcdHEbli+SB2JrdBzJGitM3zN7OWpMtKKdH2Qv/jVac5HWcbA6w1RnNWGgumAAo4hdqYcalIWzzfXnA1e9b2xdpl9FKeclCkMl+zClQPSHdnkzsdbYdnr1lwb/2bbSboOv60u3aTu7FRmUQCx/a415b3s7y2eIKjYuP7+DE/BOae5NttaSaw71k8wa8NYo42ej6w6yA6vmqtWd4/FC79XabIXTo3rPA+LBddW3F/N9ZLbSVUrCmKoux0gpi/KJPmUOtyNpSOQWkp6mVZzjPNCpHOBIKqG0nUnO0RKuQ6FW3xfWXSFd+3rHltTeZfSv2UH/FxrY+ZMcDiKTfjM6g4w13kLPrsNXSupUcw9UbkllwTdR8jKhkD95rwrkRtl/NrswLORvz8UBo3+jQ3tBakCSHpicjJmuJxFmDlGbnlKQJA93tWNp8lSKSU3POSkvcchf1rEIvMvZ9+5Orj+tFvf4NYukYNC78Nnliw5HSbenRFURRltLGzIgGuTdous0lb89I92Gf2Zj/80NlFtOZZWFhjXDvsO2266JC1mEDB0wO6sFMAJsF1XzFHmoCS55fM4cxaPIGgPAe1yMCCTLoZ7XraAV9P2pBaMPnbj5xtRi+5RNPGzwGo6c6b1rmzsjGz8rxLixe4NKAdCg9II8SYE2omXypu8gRo9rE1sb5k4Vj3/NK8xXYby9Gck+aLthvInjREVJ92jQVje0QATgD11O2XJZMB8nm29v9JsWllIu42TVWsKYqiKJuFNZYtp6e2A0XePw25HH4IV3cWAkhYxHiBuPZLKq0cNTJGxmNFTvDYDk7rgm+jb53XFDwtoLXII486fmEEjO3m19VPyeDyNqdd24vdqTzyuLbL1oFZodaY6S/YggqLTW9c6r8CFij1kytboJDnBqhbqxI/7BZ35HH9XiARw0GEX5m0CSwe465a8iTNu4j+owqEIuP31gpWgIWXFcQWY9CZq1qdlgkIpSHynYaBdXzu06ZLsw86TusMULGmKIqyo7GmrdHOnk2atlw6rbceDBD/sWknKKx46niQCWUx1yhNObAEsaRWM56mYEcoWXsIL5BIjTQyWDHi+ZweBTj6VJmUjlPfdbQu19Vq67sAKfC3NWOrSAArcEzB5+it6woiWZOsY9AoZi9pkz3Ppg/y8PXKODD7FFYVUUY6S4OYr2VsL9uLpNLgYbtFi4yvpe81r/N/UPJ0edPkTUDFmqIoyk6nyIFijRGR7YYpXMSlH1YQACwKCklhtlaI3pl8aaQpqrGoiiR1aGunkrr4iO0F0sSl9tqLXM81cQ5YSDZdR6gfuKib7Xq19VzGlMx6jfMTSxZlPBStbkNha7qWq2nr1PBJh2nXsHvB87v94lY6V6cWLRg80pvU+bg1sdcIaxw9tKn9tOkaPgK57vVEAIeMijVFURRFWY08cWlNKyqCCoA1pFoBTplFMnO0Y80hx0ubHG0DOE3ZnOVzVKc4NWs7QrMWp/z8UGq1pN7KD6U5AeCaN+lSzVql2qy8+zUr0ZpnUbmcyEpbImDJRfd6j1uZ5OeEVX7OclYmWYu7UuMa0FjBm64fdkKEje51icvS3noBC9V4nEXsFqQvNwoVa4qiKIqyGnZQOpHzE1tP2thG0EzBAqZsCWEHifuhGMgC7H+WumiaNaRNmy5qZvEjdGaF2rS2H/Fx0xYAAib2uXq+1UZ2ETh65weAyfqLm/Lg8n4CqxMdGyBK1ppzfmhl/MilM/tilhr1thf72G2YvjfPBlSsKYqiKMpASDNGPyuHsCKpwBXminqBFOiLSOqXirN1clGNRUpzln+sFUUQ8+vjcRmMbrixwAqyaIyjWVZYJQ3XiGC7RgFpougRa0s81MKe2wkQT/LaFk5gxSYAP5IIVsHRwmIZg+B++2br67I2X09Uk+ucXTkiWD5+v71tL0onbsERuCCW8VPp2ppRhoCKNUVRFGVnYuvQ0saZdcJWJjn9aHJg4Xh/QUE+11UFFRZVdRki7gXOMqQ5K9MFKsDU+XxfWAHmj7rjdOaPTtkD87GR8/kDmc7gB0C97mq2AhFFUY2jb72D1CsTpWYG8RyzHY+A3K4Ce5/poosnH3SmuAA3INhrj2rileazYOwnYuMJ5/dmBaf1L7PX2vFbo8Hmn65GWcTZWal2tusIewyqWFMURVF2Hn5Y8pfzVzaWXY1KSXT44TJijVgc+CELqeaMuPGPs0ltnjhBVZl0Kb1ec1hLe9EZ9pqChY91+bc5vrJAsinbfmlGoDuq1mlS6Gm68P3S6CVZlzXFBXgPrJjM025rkZXOSZ6YBOfs/VZeR9rkfStWaVAYFPLBkw2MM9+1NW8jjIo1RVEURTkT2nXuYDQrjLAqMo4whdXuWrew4gRcY0aiSta4ttk9I7PreLmz0qjtlq7LCh8jabCwWS4lG8g80rRdEnELbqLCcq9LFoG5I3wNCxLtyxLuwAS6xVRS52MXBZYtEGsvAEaiW9bnzuRAkrhu1cqk7CmJDcoZNAXYiRRG7GraCxJR66n9G0FUrCmKoig7DzsZwKZBz4TWnGsCWKlmrX7C2XVYUWctLfzADRiPJeKXixCKKiwIe8c4WUwBwBdfNr80XF7w5NhWTMUT/LgfAosyxH3FAv4SC0e7//YC11lpr93zucbNDohfDlOIuS0B1V3SONFa+pzO7TMUVDalS8TrG3Q+7AigYk1RFEXZmWRtABuQWjNmeSG12vMas8BUlaNcE/tZPPghR5GCiDsy84xHVtku0l5ac5xCzVNOJ/qhm6rg+cD0+SyqmrNin5FzJHClqNegxOOS4rWi1wovArK4f9rVC1y3qo3m2TFnQaVUs7bA71E8IUI45/q4sAK0Gzw5YS3Y/ckzN2Q+rHJ9XZaMdJOBijVFURRl57Gc2/+ajyNGrCbviQqRG3W0EiZnAVeZBGB4XXnGqUpjeG6mL92Sy63XmO5xV34okxBiYHwfNz9kTUlXnmLR5kdLR1iRRPbWghWXdt6pV65r8/q8gGQyggfkMadt7flru3j9NuJFPhDFLvpVGWdhFY2xqLN7Nyh+6Grqgsj5z5HHAjBpbPpA9vWiYk1RFEXZWXRql1aYpzko8biY44IjVblMH6hOs1hrzncPD+9HY1bMcmvgui3xVCPj5n6uNF0BYAFjfcXsDMyg4tKThXHHMGZpsX484ZoG/HD5dK7ni91FxpG05qw8XwSVHc5uDXt7ITmXH0jqNXf2IuTxem06NGlITZ/4rCVNbsYAeH3LTVZYjkzsOkxRGhdmGzuykRVqgIo1RVEUZadh7S3IY5FwJl2Gps8fQVSachCtINaI54DmWcks18hxZsQWY6q/1UbX9VRE6IG7JlNpMCCPj79wnNORfbtUPRZOXYaxcpvI1belLRY78TiLpyDmc/XORgWcXchy12z32w+lm1S6caOCH2/Ouj1LmzLjU/Zl/giLRZjVx2X1krWAelLaY3BjBY1uRM2iYk1RFEXZWSRNoBJwVOdMRw51jFZLxq5py82hXGlKQHXK2VssGcUkUbVBhoWXX5cl3anBxZWEKMlMTc+NoiLilKxNuwaxM9ltL5REjVlfRNIUQLLAQs/vEc3LXWvvviSL/Z836PmX3DfaQg1QsaYoiqKcFZDMyAxc4fl6yZPBRNBAmKVRL1O4gvmVsCa0doj5ersd84SjUeTxvlijXSOpz7JA8XwWkp0mhoo0InjSeBA6o9ik4cZXmZyPW58DxmuczvSC9fmTtRYALEhdnUQFx/awQFw8gYHq5rrMeGdXXkc8AYQxi/S11LiNECrWFEVRlNHHD531QljdGIPUYdNecNdyprYU5VSknTlKkPFUkpIkH9j1dBZJ5LOgtPVbnZSirMPWkmVt7lT1PFdbhoKfdqbvQ5FJjd+EDJpPOc06SFdmUHGmukFlBRFGzrA4qqlYUxRFUZRNo0hZQJT9ws527BzQzThuGLOg6pq5GZWmBsh9rXk3PB7EAsqOfoJhkRaEfCzrxbaR70OeiAiMuGN1La8zVXd7WQw/7kdn9edGxZqiKIoy+lgvrjNJF24FvQa0wyBPgEWb5i3tVdbm7tSwAjROcT2dKZwdhh9I7VqpEcGP0LEhsV2iG/0+tOaAvM3RvnLTQKcBJMGS1GiellLZq6yjObdxVi1DQsWaoiiKcvaw0UItqADxGAuc1hmaovqhq6NKGi7l5odcN2UKGRG1zmuwFiHZCk0LHfqcwxRugHwZL5SfAC7kJqTWLsN0N0t0OkY9GSpP0nG6zmL9tCVjsGI5T7n5IV3GumQN+3gWCzUA6OdYpyiKoig7A2uKGlSWH5reF8ISYVMehl4+Vlh18y+DeH3rDKvs7F8eGr8cfsiRMtvAYIXP+F4RRFVn9QGwqPR8J8BslybAkxOMDIsv399ZV8VFE8Pq+q4N4BRtZZJFbTTmGhuAVd6XPu/DNmQgsUZE00T0SSK6n4juI6LvJaLdRHQ7ET0gv3dt9mIVRVEUZUOxNV1FPnhUyA+5e3FsT0kQQYrxxResXbKXsPYgxnDt3XroMoBd6aubeGJBVJOIF1gI2ahZdYqL+KMx8SuD1KlZ6xDTnQYtn7efCW2eOt+ysg0K+SIsBxVwpWsicnNDs4Rr6vrhR8B4n/dhGzJoZO1aAH9rjHkOgBcAuA/ANQDuMMY8G8Ad8reiKIqinD20F7gGazmrDT9aGtkJYon8kDPY7RxvkcVFl/dZi+ur6qfWnyZMGu4nbUg9V59IVz/yxJ03tYa0EYspG+lLGmJwm3Wvveu8fRoAbA1b/XR3oX9lQlLM466LdyWyljMGbkv6OG1JPdsyAjew9XR93odtxqpSlIimAPwAgKsAwBiTAEiI6AoAL5OnfRzAFwD80mYsUlEURVE2jeUEVDzOkSFjgOZMSfC03OzOdJVGAvu81UZODYKtgbNzNMlzXmqdaJj8HcSuts0W7mdtfjysAOP7eQRVZaJknNuvBmyAIfV9jWYLsQihwevF1jqRwL4PQQUIDY/7Gqie7+xjkMjahQBOAPgYEX2diG4gojEA+40xR+Q5RwHs36xFKoqiKMqWYyNqRDLkXLCTBRqnV3a/D6tch1WdWn+tGi+g50+Pf6IaH7823aeuy/D5wxo/buvd5KHOjM9B0odhdfU6uV4Sif4VhQyQ3wSKjOeq5omMxhpb2+ut6B3bM1j0b4gMItYCAC8CcJ0x5hIAdfSkPI0pD9rqhoiuJqK7iejuojXC7daKoiiKUqZd5xRc2lxfZKzccGBTgmtqYgALqvG9rssUYJGSNFgIpU1wKrB0ruo0MLYXmNjvRlqV1xNIatfz2NV/xfPXeN3xBBBUpVFh3+q1aFHN/az1mgeFfBbLNuK5XLp0OWwtH3ln1hyxBQxSkfcEgCeMMV+Rvz8JFmvHiOhcY8wRIjoXwPF+LzbGXA/gegCI9niq1hRFUZSzgyJbxjJiQGx0iUjq3DwWUo3TK6f8bNSryFxEyw+dOAE4NZm1+Hm5pECJloZNiszN+bTpzKJwPnCr1tCRW1MQu0hcWFlhWDv4WtMWC8LVUsXroTrFdXd5yia+nt9/UP1K2H0hkiH1EnlsL2Ld9iqbxKpizRhzlIgeJ6KLjTHfAvByAIfl500A3ie/b9nUlSqKoijKWYXhBgbyOIoTVQGQCKx0+UhQPCHRsJhFRBCJY3+PsCpybmaoTHIK0BRc6N+aYzFGHr+uV1TZYn57eyWSuswQjd0kA8LKA+ohj/syO3Qz6shsc4WNGq5VqAG8tvppvp6w5oSxyddeP7fJDNrr+jMAbiSiCMBDAN4MTqH+JRG9BcCjAF63OUtUFEVRlLOYjhmudC7CrFx0b3IAIT8vWQRaq0S/ygPhPW9lIQi4mrtByTMXiUsWV46oWbIWsLiJxf5Jg8WVbZpYN0ZGaZX2eL0du5vIQGLNGPMNAJf2eejlG7scRVEURdmG5CmweIIjVCt5usUT7JNW5MDiycGEQ1Ln2rAs2RyhkTacae5qEbWtIqlv7FD2tMXpYWBjOnc3mO3tIqcoiqIoo8RKM0PJd52JRcZRskFcL8oD4a37f7uODau7KvIzq907WxhBkWZRsaYoiqIoo0Keilgr1t7dGNbcGClTbF3dlU3DrqduTBkIFWuKoiiKMgqYnFOlfsSpx966Nju1IE/cY0GFRVLRM3lgowfeL4cfubFWrYX1NRPY2aIrRR13OEMVaxfsuwC1uIab33XzMJexrTh08BAOP3F42MtQFEVR1kOeLJ+Os1MLipztPyqTYrZrgPoMCyXrZ7pO4XPo4KG1fSeT73zUinxlk+D+B+CuUVC3Z9o24dDBQ2i0zzzCqZG1bcbhJw7jlq+qi4qiKMqGY8dP5Yl0d24ltpMUzty2Y4RL0gWan1F0al3fHaYADLnba4UIbkJDn0HxCoAhi7VHTjwCALjyQ1cOcxmKoiiKsjqBNaiNZC7nOsTJujGcZgxi15HZXnDmuWutb+vDTXfdhJvuuumMj7NmojGOzrXr64jMjTYblTnUyJqiKIqiDELWcpG1LRVq9vzt7siZNcU9m/FD1/26zYTaRqJiTVEURVEGob0oo4hGmKjGEcCsNXIu/H2JxlgAk5j5hlVOjbbmh1e/ZidIJI3Nmb6wDgYZ5K4oiqKczVSneRi4HaejbF9sSjEaG/ZKBsfWAlamWSR5wfAGq3s+/3fi+TzCa0RQsaYoirKdsWkm0PC+AJWtw9aubUAN2+ZDQFDljtK8DZgMHSPfYa2/KFxEb4RMcjUNqiiKsp3JM/7yUR+r0YF8N8Nzo2nOcmTqbDCorUwClXFOexoDNGbkARpi/Zqsw/NHag9VrCmKomxrDHty2S9EZbh4PlDdxe9H0tjY+ZaWERIZK2I942CA5vxwmjb6YpbuoR/yeof0Pzwq1hRFUXYCKtRGAy9wfmneDv8KTuryPxE50B7hrlY/5LpPQAbIb33jxg7/pCiKoijKFpK1ucOQ/M2Jqg0TP+LUpik4HbtapCxPOOo76pDf//YWomJNURRFUbaS1sKwV7A5hDFHysgX897msFe0MWQtIA04DTokga1iTVEURVGUMydtA77MKs1Gp5NyQxiyv56KNUVRFEVRzpw8Aeonh72KbYn6rCmKoiiKsgXooPb1opE1RVEURVE2l3iCJwNkCdCaG/Zqzjo0sqYoiqIoyuYSxvw7iJx1iTIwKtYURVEURdlcUhmInrXV828daBpUURRFUZTNpb049I7KsxmNrCmKoiiKoowwKtYURVEURVFGGBVriqIoiqIoI4yKNUVRFEVRlBFGxZqiKIqiKMoIo2JNURRFURRlhFGxpiiKoiiKMsKoWFMURVEUZf34If8om4aa4iqKoiiKsj6CGKhM8u32gptUoGwoGllTFEVRFGV9kN//trKhaGRNURRFUZT1kTYB3wdAQNoY9mq2LSrWFEVRFEVZJwZoLQx7EdseTYMqiqIoiqKMMCrWFEVRFEVRRphVxRoRXUxE3yj9zBPRO4loNxHdTkQPyO9dW7FgRVEURVGUncSqYs0Y8y1jzAuNMS8E8N0AGgA+A+AaAHcYY54N4A75W1EURVEURdlA1poGfTmA7xhjHgVwBYCPy/0fB/DajVyYoiiKoiiKsnaxdiWAm+T2fmPMEbl9FMD+DVuVoiiKoiiKAmANYo2IIgCvAfBXvY8ZYwwAs8zrriaiu4no7qLV9ymKoiiKoijKMqwlsvYqAF8zxhyTv48R0bkAIL+P93uRMeZ6Y8ylxphLvQqd2WoVRVEURVF2GGsRa6+HS4ECwK0A3iS33wTglo1alKIoiqIoisIMJNaIaAzADwH4dOnu9wH4ISJ6AMAr5G9FURRFURRlAxlo3JQxpg5gT899p8DdoYqiKIqiKIMRTwBBBCQNni2qrIpOMFAURVEUZWsgDwgr/DsaG/ZqzhpUrCmKoiiKsjWYAigyvp0nw13LWcRAaVBFURRFUZQNoTEDeD5Q5MNeyVmDRtYURVEURdlaVKitCRVriqIoiqIoI4yKNUVRFEXZDhBx4b6y7dCaNUVRFEU52/ECoDoNEIDWApC1h70iZQNRCa4oiqIoZzt+xJE1EOCHw16NssGoWFMURVGUs52sxZYYRQ6krWGvRtlgNA2qKIqiKGc7pmBLDGVbopE1RVEURVGUEUbFmqIoiqIoygijYk1RFEVRFGWEUbGmKIqiKIoywqhYUxRFURRFGWFUrCmKoiiKoowwKtYURVEURVFGGBVriqIoiqIoI4yKNUVRlDJeAERj/FtRFGUEULGmKIpSpjoFRDX+rSiKMgKoWFMURemCen4riqIMF43zK4qilGnOAkEMZO1hr0RRFAWAijVFUZRuigxIsmGvQlEUpYOmQRVFURRFUUYYFWuKoiiKoigjjIo1RVEURVGUEUbFmqIoiqIoygijYk1RFEVRFGWEUbGmKIqiKIoywqhYUxRFURRFGWFUrCmKoiiKoowwKtYURVEURVFGGBVriqIoiqIoI4yKNUVRFEVRlBFGxZqiKIqiKMoIo2JNURRFURRlhBlIrBHRu4joXiK6h4huIqIKEV1IRF8hogeJ6BNEFG32YhVFURRFUXYaq4o1IjofwDsAXGqMeR4AH8CVAH4bwIeMMc8CMAPgLZu5UEVRFEVRlJ3IoGnQAECViAIANQBHAFwO4JPy+McBvHbjl6coiqIoirKzCVZ7gjHmSSL6AIDHADQB3AbgHwHMGmMyedoTAM5fzwIOHTyEm99183peqiiKsiYOHTwEAPpvjqIoW8Khg4dw+InDZ3ycVcUaEe0CcAWACwHMAvgrAK8c9AREdDWAqwHAr3U/dstXbxl8pYqiKGdIo90Y9hIURdlBHH7i8IZonVXFGoBXAHjYGHMCAIjo0wBeAmCaiAKJrh0E8GS/FxtjrgdwPQBEezxTfuymu27CTXfddAbLVxRFURRF2d4MUrP2GIDvIaIaERGAlwM4DOBOAP9WnvMmABomUxRFURRF2WBWFWvGmK+AGwm+BuCf5TXXA/glAD9HRA8C2APgjzdxnYqiKIqiKDuSQdKgMMb8KoBf7bn7IQAv3vAVKYqiKIqiKB3IGLP6szbqZEQnADzac/deACe3bBFKGd374aF7Pzx074eH7v3w0L0fHv32/hnGmH2DHmBLxVrfBRDdbYy5dKiL2KHo3g8P3fvhoXs/PHTvh4fu/fDYiL3X2aCKoiiKoigjjIo1RVEURVGUEWYUxNr1w17ADkb3fnjo3g8P3fvhoXs/PHTvh8cZ7/3Qa9YURVEURVGU5RmFyJqiKIqiKIqyDEMTa0T0SiL6FhE9SETXDGsdOwEiehoR3UlEh4noXiL6Wbl/NxHdTkQPyO9dw17rdoWIfCL6OhH9D/n7QiL6inz+P0FE0bDXuB0homki+iQR3U9E9xHR9+rnfmsgonfJvzf3ENFNRFTRz/3mQUR/QkTHieie0n19P+vE/Dd5H75JRC8a3srPfpbZ+/fLvzvfJKLPENF06bF3y95/i4j+9SDnGIpYIyIfwB8AeBWAQwBeT0SHhrGWHUIG4OeNMYcAfA+At8l+XwPgDmPMswHcIX8rm8PPAriv9PdvA/iQMeZZAGYAvGUoq9r+XAvgb40xzwHwAvB7oJ/7TYaIzgfwDgCXGmOeB8AHcCX0c7+Z/CmAV/bct9xn/VUAni0/VwO4bovWuF35Uyzd+9sBPM8Y810Avg3g3QAg371XAniuvOYPRROtyLAiay8G8KAx5iFjTALgZgBXDGkt2x5jzBFjzNfk9gL4C+t88J5/XJ72cQCvHc4KtzdEdBDAjwK4Qf4mAJeDx7gBuvebAhFNAfgByCg8Y0xijJmFfu63igBAlYgCADUAR6Cf+03DGPNFAKd77l7us34FgD8zzJcBTBPRuVuz0u1Hv703xtxmjMnkzy8DOCi3rwBwszGmbYx5GMCDGGAa1LDE2vkAHi/9/YTcp2wyRHQBgEsAfAXAfmPMEXnoKID9Q1rWdufDAH4RQCF/7wEwW/oPWT//m8OFAE4A+JikoG8gojHo537TMcY8CeADAB4Di7Q5AP8I/dxvNct91vU7eGv5fwD8jdxe195rg8EOgojGAXwKwDuNMfPlxwy3BWtr8AZDRK8GcNwY84/DXssOJADwIgDXGWMuAVBHT8pTP/ebg9RGXQEWzOcBGMPSNJGyhehnfTgQ0a+AS5FuPJPjDEusPQngaaW/D8p9yiZBRCFYqN1ojPm03H3Mhr7l9/FhrW8b8xIAryGiR8Dp/svBdVTTkh4C9PO/WTwB4AljzFfk70+CxZt+7jefVwB42BhzwhiTAvg0+L8F/dxvLct91vU7eAsgoqsAvBrAG4zzSVvX3g9LrH0VwLOlMygCF9vdOqS1bHukRuqPAdxnjPnd0kO3AniT3H4TgFu2em3bHWPMu40xB40xF4A/5583xrwBwJ0A/q08Tfd+EzDGHAXwOBFdLHe9HMBh6Od+K+53zL0AAAFXSURBVHgMwPcQUU3+/bF7r5/7rWW5z/qtAP6DdIV+D4C5UrpU2QCI6JXg8pfXGGMapYduBXAlEcVEdCG4yeMfVj3esExxiehHwLU8PoA/Mcb85lAWsgMgopcC+BKAf4arm/plcN3aXwJ4OoBHAbzOGNNboKpsEET0MgC/YIx5NRE9Exxp2w3g6wD+b2NMe5jr244Q0QvBjR0RgIcAvBn8P6n6ud9kiOjXAPw4OAX0dQA/Aa7N0c/9JkBENwF4GYC9AI4B+FUA/x19PusioH8fnJpuAHizMebuYax7O7DM3r8bQAzglDzty8aYt8rzfwVcx5aBy5L+pveYS86hEwwURVEURVFGF20wUBRFURRFGWFUrCmKoiiKoowwKtYURVEURVFGGBVriqIoiqIoI4yKNUVRFEVRlBFGxZqiKIqiKMoIo2JNURRFURRlhFGxpiiKoiiKMsL8/7f2L5Bhky/CAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "