{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "done\n"
     ]
    }
   ],
   "source": [
    "import json\n",
    "import os\n",
    "from pandas.io.json import json_normalize\n",
    "import numpy as np\n",
    "import seaborn as sns\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib.patches import Arc, Rectangle, ConnectionPatch\n",
    "from matplotlib.offsetbox import  OffsetImage\n",
    "#import squarify\n",
    "from functools import reduce\n",
    "path = \"\"\"C:\\\\Users\\\\Koushik\\\\Downloads\\\\open-data-master\\\\open-data-master\\\\data\\\\my_events\\\\\"\"\"\n",
    "Xg_req = pd.DataFrame(data=None)\n",
    "for filename in (os.listdir(path)):\n",
    "    #print(filename)\n",
    "    \n",
    "    with open(\"%s\" % path + filename,encoding=\"utf8\") as data_file:    \n",
    "        data = json.load(data_file)\n",
    "        df = pd.DataFrame(data=None)\n",
    "        \n",
    "        df = json_normalize(data, sep = \"_\")\n",
    "        \n",
    "        #df =  df[(df['type_name'] == \"Shot\")]\n",
    "        #df = df.loc[:,['location','shot_body_part_id','shot_end_location','shot_one_on_one','shot_technique_id','shot_type_id','under_pressure','shot_outcome_id']]\n",
    "        #print(df.shape)\n",
    "    Xg_req = Xg_req.append(df,ignore_index=True,sort=False)\n",
    "        #df.drop(df.index, inplace=True)\n",
    "        \n",
    "print(\"done\")\n",
    "df = Xg_req"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>bad_behaviour_card_id</th>\n",
       "      <th>bad_behaviour_card_name</th>\n",
       "      <th>ball_receipt_outcome_id</th>\n",
       "      <th>ball_receipt_outcome_name</th>\n",
       "      <th>ball_recovery_offensive</th>\n",
       "      <th>ball_recovery_recovery_failure</th>\n",
       "      <th>block_deflection</th>\n",
       "      <th>dribble_nutmeg</th>\n",
       "      <th>dribble_outcome_id</th>\n",
       "      <th>dribble_outcome_name</th>\n",
       "      <th>...</th>\n",
       "      <th>pass_miscommunication</th>\n",
       "      <th>shot_aerial_won</th>\n",
       "      <th>shot_open_goal</th>\n",
       "      <th>50_50_outcome_id</th>\n",
       "      <th>50_50_outcome_name</th>\n",
       "      <th>block_offensive</th>\n",
       "      <th>miscontrol_aerial_won</th>\n",
       "      <th>foul_committed_penalty</th>\n",
       "      <th>shot_deflected</th>\n",
       "      <th>shot_redirect</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>204</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>749</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1651</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2741</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3890</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4594</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4647</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4784</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4918</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6271</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7406</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7924</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9525</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10606</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10877</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12291</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13231</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13839</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13975</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14105</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14173</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14561</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15815</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15894</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15928</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19882</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20227</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20823</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20917</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21975</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>152707</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>155048</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>158183</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>161937</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>162329</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>163634</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>163781</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>164961</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>165854</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>166107</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>166301</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>166464</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>166557</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>167304</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>168706</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171222</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171224</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171226</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171228</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171232</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171234</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>171236</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>172725</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>173646</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>175473</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>175627</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>176100</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>176213</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>176750</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>178726</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>True</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>200 rows × 118 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "        bad_behaviour_card_id bad_behaviour_card_name  \\\n",
       "204                       NaN                     NaN   \n",
       "749                       NaN                     NaN   \n",
       "1651                      NaN                     NaN   \n",
       "2741                      NaN                     NaN   \n",
       "3890                      NaN                     NaN   \n",
       "4594                      NaN                     NaN   \n",
       "4647                      NaN                     NaN   \n",
       "4784                      NaN                     NaN   \n",
       "4918                      NaN                     NaN   \n",
       "6271                      NaN                     NaN   \n",
       "7406                      NaN                     NaN   \n",
       "7924                      NaN                     NaN   \n",
       "9525                      NaN                     NaN   \n",
       "10606                     NaN                     NaN   \n",
       "10877                     NaN                     NaN   \n",
       "12291                     NaN                     NaN   \n",
       "13231                     NaN                     NaN   \n",
       "13839                     NaN                     NaN   \n",
       "13975                     NaN                     NaN   \n",
       "14105                     NaN                     NaN   \n",
       "14173                     NaN                     NaN   \n",
       "14561                     NaN                     NaN   \n",
       "15815                     NaN                     NaN   \n",
       "15894                     NaN                     NaN   \n",
       "15928                     NaN                     NaN   \n",
       "19882                     NaN                     NaN   \n",
       "20227                     NaN                     NaN   \n",
       "20823                     NaN                     NaN   \n",
       "20917                     NaN                     NaN   \n",
       "21975                     NaN                     NaN   \n",
       "...                       ...                     ...   \n",
       "152707                    NaN                     NaN   \n",
       "155048                    NaN                     NaN   \n",
       "158183                    NaN                     NaN   \n",
       "161937                    NaN                     NaN   \n",
       "162329                    NaN                     NaN   \n",
       "163634                    NaN                     NaN   \n",
       "163781                    NaN                     NaN   \n",
       "164961                    NaN                     NaN   \n",
       "165854                    NaN                     NaN   \n",
       "166107                    NaN                     NaN   \n",
       "166301                    NaN                     NaN   \n",
       "166464                    NaN                     NaN   \n",
       "166557                    NaN                     NaN   \n",
       "167304                    NaN                     NaN   \n",
       "168706                    NaN                     NaN   \n",
       "171222                    NaN                     NaN   \n",
       "171224                    NaN                     NaN   \n",
       "171226                    NaN                     NaN   \n",
       "171228                    NaN                     NaN   \n",
       "171232                    NaN                     NaN   \n",
       "171234                    NaN                     NaN   \n",
       "171236                    NaN                     NaN   \n",
       "172725                    NaN                     NaN   \n",
       "173646                    NaN                     NaN   \n",
       "175473                    NaN                     NaN   \n",
       "175627                    NaN                     NaN   \n",
       "176100                    NaN                     NaN   \n",
       "176213                    NaN                     NaN   \n",
       "176750                    NaN                     NaN   \n",
       "178726                    NaN                     NaN   \n",
       "\n",
       "        ball_receipt_outcome_id ball_receipt_outcome_name  \\\n",
       "204                         NaN                       NaN   \n",
       "749                         NaN                       NaN   \n",
       "1651                        NaN                       NaN   \n",
       "2741                        NaN                       NaN   \n",
       "3890                        NaN                       NaN   \n",
       "4594                        NaN                       NaN   \n",
       "4647                        NaN                       NaN   \n",
       "4784                        NaN                       NaN   \n",
       "4918                        NaN                       NaN   \n",
       "6271                        NaN                       NaN   \n",
       "7406                        NaN                       NaN   \n",
       "7924                        NaN                       NaN   \n",
       "9525                        NaN                       NaN   \n",
       "10606                       NaN                       NaN   \n",
       "10877                       NaN                       NaN   \n",
       "12291                       NaN                       NaN   \n",
       "13231                       NaN                       NaN   \n",
       "13839                       NaN                       NaN   \n",
       "13975                       NaN                       NaN   \n",
       "14105                       NaN                       NaN   \n",
       "14173                       NaN                       NaN   \n",
       "14561                       NaN                       NaN   \n",
       "15815                       NaN                       NaN   \n",
       "15894                       NaN                       NaN   \n",
       "15928                       NaN                       NaN   \n",
       "19882                       NaN                       NaN   \n",
       "20227                       NaN                       NaN   \n",
       "20823                       NaN                       NaN   \n",
       "20917                       NaN                       NaN   \n",
       "21975                       NaN                       NaN   \n",
       "...                         ...                       ...   \n",
       "152707                      NaN                       NaN   \n",
       "155048                      NaN                       NaN   \n",
       "158183                      NaN                       NaN   \n",
       "161937                      NaN                       NaN   \n",
       "162329                      NaN                       NaN   \n",
       "163634                      NaN                       NaN   \n",
       "163781                      NaN                       NaN   \n",
       "164961                      NaN                       NaN   \n",
       "165854                      NaN                       NaN   \n",
       "166107                      NaN                       NaN   \n",
       "166301                      NaN                       NaN   \n",
       "166464                      NaN                       NaN   \n",
       "166557                      NaN                       NaN   \n",
       "167304                      NaN                       NaN   \n",
       "168706                      NaN                       NaN   \n",
       "171222                      NaN                       NaN   \n",
       "171224                      NaN                       NaN   \n",
       "171226                      NaN                       NaN   \n",
       "171228                      NaN                       NaN   \n",
       "171232                      NaN                       NaN   \n",
       "171234                      NaN                       NaN   \n",
       "171236                      NaN                       NaN   \n",
       "172725                      NaN                       NaN   \n",
       "173646                      NaN                       NaN   \n",
       "175473                      NaN                       NaN   \n",
       "175627                      NaN                       NaN   \n",
       "176100                      NaN                       NaN   \n",
       "176213                      NaN                       NaN   \n",
       "176750                      NaN                       NaN   \n",
       "178726                      NaN                       NaN   \n",
       "\n",
       "       ball_recovery_offensive ball_recovery_recovery_failure  \\\n",
       "204                        NaN                            NaN   \n",
       "749                        NaN                            NaN   \n",
       "1651                       NaN                            NaN   \n",
       "2741                       NaN                            NaN   \n",
       "3890                       NaN                            NaN   \n",
       "4594                       NaN                            NaN   \n",
       "4647                       NaN                            NaN   \n",
       "4784                       NaN                            NaN   \n",
       "4918                       NaN                            NaN   \n",
       "6271                       NaN                            NaN   \n",
       "7406                       NaN                            NaN   \n",
       "7924                       NaN                            NaN   \n",
       "9525                       NaN                            NaN   \n",
       "10606                      NaN                            NaN   \n",
       "10877                      NaN                            NaN   \n",
       "12291                      NaN                            NaN   \n",
       "13231                      NaN                            NaN   \n",
       "13839                      NaN                            NaN   \n",
       "13975                      NaN                            NaN   \n",
       "14105                      NaN                            NaN   \n",
       "14173                      NaN                            NaN   \n",
       "14561                      NaN                            NaN   \n",
       "15815                      NaN                            NaN   \n",
       "15894                      NaN                            NaN   \n",
       "15928                      NaN                            NaN   \n",
       "19882                      NaN                            NaN   \n",
       "20227                      NaN                            NaN   \n",
       "20823                      NaN                            NaN   \n",
       "20917                      NaN                            NaN   \n",
       "21975                      NaN                            NaN   \n",
       "...                        ...                            ...   \n",
       "152707                     NaN                            NaN   \n",
       "155048                     NaN                            NaN   \n",
       "158183                     NaN                            NaN   \n",
       "161937                     NaN                            NaN   \n",
       "162329                     NaN                            NaN   \n",
       "163634                     NaN                            NaN   \n",
       "163781                     NaN                            NaN   \n",
       "164961                     NaN                            NaN   \n",
       "165854                     NaN                            NaN   \n",
       "166107                     NaN                            NaN   \n",
       "166301                     NaN                            NaN   \n",
       "166464                     NaN                            NaN   \n",
       "166557                     NaN                            NaN   \n",
       "167304                     NaN                            NaN   \n",
       "168706                     NaN                            NaN   \n",
       "171222                     NaN                            NaN   \n",
       "171224                     NaN                            NaN   \n",
       "171226                     NaN                            NaN   \n",
       "171228                     NaN                            NaN   \n",
       "171232                     NaN                            NaN   \n",
       "171234                     NaN                            NaN   \n",
       "171236                     NaN                            NaN   \n",
       "172725                     NaN                            NaN   \n",
       "173646                     NaN                            NaN   \n",
       "175473                     NaN                            NaN   \n",
       "175627                     NaN                            NaN   \n",
       "176100                     NaN                            NaN   \n",
       "176213                     NaN                            NaN   \n",
       "176750                     NaN                            NaN   \n",
       "178726                     NaN                            NaN   \n",
       "\n",
       "       block_deflection dribble_nutmeg  dribble_outcome_id  \\\n",
       "204                 NaN            NaN                 NaN   \n",
       "749                 NaN            NaN                 NaN   \n",
       "1651                NaN            NaN                 NaN   \n",
       "2741                NaN            NaN                 NaN   \n",
       "3890                NaN            NaN                 NaN   \n",
       "4594                NaN            NaN                 NaN   \n",
       "4647                NaN            NaN                 NaN   \n",
       "4784                NaN            NaN                 NaN   \n",
       "4918                NaN            NaN                 NaN   \n",
       "6271                NaN            NaN                 NaN   \n",
       "7406                NaN            NaN                 NaN   \n",
       "7924                NaN            NaN                 NaN   \n",
       "9525                NaN            NaN                 NaN   \n",
       "10606               NaN            NaN                 NaN   \n",
       "10877               NaN            NaN                 NaN   \n",
       "12291               NaN            NaN                 NaN   \n",
       "13231               NaN            NaN                 NaN   \n",
       "13839               NaN            NaN                 NaN   \n",
       "13975               NaN            NaN                 NaN   \n",
       "14105               NaN            NaN                 NaN   \n",
       "14173               NaN            NaN                 NaN   \n",
       "14561               NaN            NaN                 NaN   \n",
       "15815               NaN            NaN                 NaN   \n",
       "15894               NaN            NaN                 NaN   \n",
       "15928               NaN            NaN                 NaN   \n",
       "19882               NaN            NaN                 NaN   \n",
       "20227               NaN            NaN                 NaN   \n",
       "20823               NaN            NaN                 NaN   \n",
       "20917               NaN            NaN                 NaN   \n",
       "21975               NaN            NaN                 NaN   \n",
       "...                 ...            ...                 ...   \n",
       "152707              NaN            NaN                 NaN   \n",
       "155048              NaN            NaN                 NaN   \n",
       "158183              NaN            NaN                 NaN   \n",
       "161937              NaN            NaN                 NaN   \n",
       "162329              NaN            NaN                 NaN   \n",
       "163634              NaN            NaN                 NaN   \n",
       "163781              NaN            NaN                 NaN   \n",
       "164961              NaN            NaN                 NaN   \n",
       "165854              NaN            NaN                 NaN   \n",
       "166107              NaN            NaN                 NaN   \n",
       "166301              NaN            NaN                 NaN   \n",
       "166464              NaN            NaN                 NaN   \n",
       "166557              NaN            NaN                 NaN   \n",
       "167304              NaN            NaN                 NaN   \n",
       "168706              NaN            NaN                 NaN   \n",
       "171222              NaN            NaN                 NaN   \n",
       "171224              NaN            NaN                 NaN   \n",
       "171226              NaN            NaN                 NaN   \n",
       "171228              NaN            NaN                 NaN   \n",
       "171232              NaN            NaN                 NaN   \n",
       "171234              NaN            NaN                 NaN   \n",
       "171236              NaN            NaN                 NaN   \n",
       "172725              NaN            NaN                 NaN   \n",
       "173646              NaN            NaN                 NaN   \n",
       "175473              NaN            NaN                 NaN   \n",
       "175627              NaN            NaN                 NaN   \n",
       "176100              NaN            NaN                 NaN   \n",
       "176213              NaN            NaN                 NaN   \n",
       "176750              NaN            NaN                 NaN   \n",
       "178726              NaN            NaN                 NaN   \n",
       "\n",
       "       dribble_outcome_name  ... pass_miscommunication  shot_aerial_won  \\\n",
       "204                     NaN  ...                   NaN              NaN   \n",
       "749                     NaN  ...                   NaN              NaN   \n",
       "1651                    NaN  ...                   NaN              NaN   \n",
       "2741                    NaN  ...                   NaN              NaN   \n",
       "3890                    NaN  ...                   NaN              NaN   \n",
       "4594                    NaN  ...                   NaN              NaN   \n",
       "4647                    NaN  ...                   NaN              NaN   \n",
       "4784                    NaN  ...                   NaN             True   \n",
       "4918                    NaN  ...                   NaN              NaN   \n",
       "6271                    NaN  ...                   NaN              NaN   \n",
       "7406                    NaN  ...                   NaN              NaN   \n",
       "7924                    NaN  ...                   NaN              NaN   \n",
       "9525                    NaN  ...                   NaN              NaN   \n",
       "10606                   NaN  ...                   NaN              NaN   \n",
       "10877                   NaN  ...                   NaN              NaN   \n",
       "12291                   NaN  ...                   NaN              NaN   \n",
       "13231                   NaN  ...                   NaN              NaN   \n",
       "13839                   NaN  ...                   NaN              NaN   \n",
       "13975                   NaN  ...                   NaN              NaN   \n",
       "14105                   NaN  ...                   NaN              NaN   \n",
       "14173                   NaN  ...                   NaN              NaN   \n",
       "14561                   NaN  ...                   NaN              NaN   \n",
       "15815                   NaN  ...                   NaN              NaN   \n",
       "15894                   NaN  ...                   NaN              NaN   \n",
       "15928                   NaN  ...                   NaN              NaN   \n",
       "19882                   NaN  ...                   NaN              NaN   \n",
       "20227                   NaN  ...                   NaN              NaN   \n",
       "20823                   NaN  ...                   NaN              NaN   \n",
       "20917                   NaN  ...                   NaN              NaN   \n",
       "21975                   NaN  ...                   NaN              NaN   \n",
       "...                     ...  ...                   ...              ...   \n",
       "152707                  NaN  ...                   NaN              NaN   \n",
       "155048                  NaN  ...                   NaN              NaN   \n",
       "158183                  NaN  ...                   NaN              NaN   \n",
       "161937                  NaN  ...                   NaN             True   \n",
       "162329                  NaN  ...                   NaN              NaN   \n",
       "163634                  NaN  ...                   NaN              NaN   \n",
       "163781                  NaN  ...                   NaN              NaN   \n",
       "164961                  NaN  ...                   NaN              NaN   \n",
       "165854                  NaN  ...                   NaN              NaN   \n",
       "166107                  NaN  ...                   NaN              NaN   \n",
       "166301                  NaN  ...                   NaN              NaN   \n",
       "166464                  NaN  ...                   NaN              NaN   \n",
       "166557                  NaN  ...                   NaN              NaN   \n",
       "167304                  NaN  ...                   NaN              NaN   \n",
       "168706                  NaN  ...                   NaN              NaN   \n",
       "171222                  NaN  ...                   NaN              NaN   \n",
       "171224                  NaN  ...                   NaN              NaN   \n",
       "171226                  NaN  ...                   NaN              NaN   \n",
       "171228                  NaN  ...                   NaN              NaN   \n",
       "171232                  NaN  ...                   NaN              NaN   \n",
       "171234                  NaN  ...                   NaN              NaN   \n",
       "171236                  NaN  ...                   NaN              NaN   \n",
       "172725                  NaN  ...                   NaN              NaN   \n",
       "173646                  NaN  ...                   NaN              NaN   \n",
       "175473                  NaN  ...                   NaN              NaN   \n",
       "175627                  NaN  ...                   NaN              NaN   \n",
       "176100                  NaN  ...                   NaN              NaN   \n",
       "176213                  NaN  ...                   NaN             True   \n",
       "176750                  NaN  ...                   NaN              NaN   \n",
       "178726                  NaN  ...                   NaN              NaN   \n",
       "\n",
       "       shot_open_goal  50_50_outcome_id 50_50_outcome_name  block_offensive  \\\n",
       "204               NaN               NaN                NaN              NaN   \n",
       "749               NaN               NaN                NaN              NaN   \n",
       "1651              NaN               NaN                NaN              NaN   \n",
       "2741              NaN               NaN                NaN              NaN   \n",
       "3890              NaN               NaN                NaN              NaN   \n",
       "4594             True               NaN                NaN              NaN   \n",
       "4647              NaN               NaN                NaN              NaN   \n",
       "4784              NaN               NaN                NaN              NaN   \n",
       "4918              NaN               NaN                NaN              NaN   \n",
       "6271              NaN               NaN                NaN              NaN   \n",
       "7406              NaN               NaN                NaN              NaN   \n",
       "7924              NaN               NaN                NaN              NaN   \n",
       "9525              NaN               NaN                NaN              NaN   \n",
       "10606             NaN               NaN                NaN              NaN   \n",
       "10877             NaN               NaN                NaN              NaN   \n",
       "12291             NaN               NaN                NaN              NaN   \n",
       "13231             NaN               NaN                NaN              NaN   \n",
       "13839             NaN               NaN                NaN              NaN   \n",
       "13975             NaN               NaN                NaN              NaN   \n",
       "14105             NaN               NaN                NaN              NaN   \n",
       "14173             NaN               NaN                NaN              NaN   \n",
       "14561             NaN               NaN                NaN              NaN   \n",
       "15815             NaN               NaN                NaN              NaN   \n",
       "15894             NaN               NaN                NaN              NaN   \n",
       "15928             NaN               NaN                NaN              NaN   \n",
       "19882             NaN               NaN                NaN              NaN   \n",
       "20227             NaN               NaN                NaN              NaN   \n",
       "20823             NaN               NaN                NaN              NaN   \n",
       "20917             NaN               NaN                NaN              NaN   \n",
       "21975             NaN               NaN                NaN              NaN   \n",
       "...               ...               ...                ...              ...   \n",
       "152707           True               NaN                NaN              NaN   \n",
       "155048            NaN               NaN                NaN              NaN   \n",
       "158183            NaN               NaN                NaN              NaN   \n",
       "161937            NaN               NaN                NaN              NaN   \n",
       "162329            NaN               NaN                NaN              NaN   \n",
       "163634            NaN               NaN                NaN              NaN   \n",
       "163781            NaN               NaN                NaN              NaN   \n",
       "164961            NaN               NaN                NaN              NaN   \n",
       "165854            NaN               NaN                NaN              NaN   \n",
       "166107            NaN               NaN                NaN              NaN   \n",
       "166301            NaN               NaN                NaN              NaN   \n",
       "166464            NaN               NaN                NaN              NaN   \n",
       "166557            NaN               NaN                NaN              NaN   \n",
       "167304            NaN               NaN                NaN              NaN   \n",
       "168706            NaN               NaN                NaN              NaN   \n",
       "171222            NaN               NaN                NaN              NaN   \n",
       "171224            NaN               NaN                NaN              NaN   \n",
       "171226            NaN               NaN                NaN              NaN   \n",
       "171228            NaN               NaN                NaN              NaN   \n",
       "171232            NaN               NaN                NaN              NaN   \n",
       "171234            NaN               NaN                NaN              NaN   \n",
       "171236            NaN               NaN                NaN              NaN   \n",
       "172725           True               NaN                NaN              NaN   \n",
       "173646           True               NaN                NaN              NaN   \n",
       "175473            NaN               NaN                NaN              NaN   \n",
       "175627            NaN               NaN                NaN              NaN   \n",
       "176100            NaN               NaN                NaN              NaN   \n",
       "176213            NaN               NaN                NaN              NaN   \n",
       "176750            NaN               NaN                NaN              NaN   \n",
       "178726            NaN               NaN                NaN              NaN   \n",
       "\n",
       "       miscontrol_aerial_won foul_committed_penalty shot_deflected  \\\n",
       "204                      NaN                    NaN            NaN   \n",
       "749                      NaN                    NaN            NaN   \n",
       "1651                     NaN                    NaN            NaN   \n",
       "2741                     NaN                    NaN            NaN   \n",
       "3890                     NaN                    NaN            NaN   \n",
       "4594                     NaN                    NaN            NaN   \n",
       "4647                     NaN                    NaN            NaN   \n",
       "4784                     NaN                    NaN            NaN   \n",
       "4918                     NaN                    NaN            NaN   \n",
       "6271                     NaN                    NaN            NaN   \n",
       "7406                     NaN                    NaN            NaN   \n",
       "7924                     NaN                    NaN            NaN   \n",
       "9525                     NaN                    NaN            NaN   \n",
       "10606                    NaN                    NaN            NaN   \n",
       "10877                    NaN                    NaN           True   \n",
       "12291                    NaN                    NaN            NaN   \n",
       "13231                    NaN                    NaN            NaN   \n",
       "13839                    NaN                    NaN            NaN   \n",
       "13975                    NaN                    NaN            NaN   \n",
       "14105                    NaN                    NaN            NaN   \n",
       "14173                    NaN                    NaN            NaN   \n",
       "14561                    NaN                    NaN            NaN   \n",
       "15815                    NaN                    NaN            NaN   \n",
       "15894                    NaN                    NaN           True   \n",
       "15928                    NaN                    NaN            NaN   \n",
       "19882                    NaN                    NaN            NaN   \n",
       "20227                    NaN                    NaN            NaN   \n",
       "20823                    NaN                    NaN            NaN   \n",
       "20917                    NaN                    NaN            NaN   \n",
       "21975                    NaN                    NaN            NaN   \n",
       "...                      ...                    ...            ...   \n",
       "152707                   NaN                    NaN            NaN   \n",
       "155048                   NaN                    NaN            NaN   \n",
       "158183                   NaN                    NaN            NaN   \n",
       "161937                   NaN                    NaN            NaN   \n",
       "162329                   NaN                    NaN            NaN   \n",
       "163634                   NaN                    NaN            NaN   \n",
       "163781                   NaN                    NaN            NaN   \n",
       "164961                   NaN                    NaN            NaN   \n",
       "165854                   NaN                    NaN            NaN   \n",
       "166107                   NaN                    NaN            NaN   \n",
       "166301                   NaN                    NaN            NaN   \n",
       "166464                   NaN                    NaN            NaN   \n",
       "166557                   NaN                    NaN            NaN   \n",
       "167304                   NaN                    NaN            NaN   \n",
       "168706                   NaN                    NaN            NaN   \n",
       "171222                   NaN                    NaN            NaN   \n",
       "171224                   NaN                    NaN            NaN   \n",
       "171226                   NaN                    NaN            NaN   \n",
       "171228                   NaN                    NaN            NaN   \n",
       "171232                   NaN                    NaN            NaN   \n",
       "171234                   NaN                    NaN            NaN   \n",
       "171236                   NaN                    NaN            NaN   \n",
       "172725                   NaN                    NaN            NaN   \n",
       "173646                   NaN                    NaN            NaN   \n",
       "175473                   NaN                    NaN            NaN   \n",
       "175627                   NaN                    NaN            NaN   \n",
       "176100                   NaN                    NaN            NaN   \n",
       "176213                   NaN                    NaN            NaN   \n",
       "176750                   NaN                    NaN            NaN   \n",
       "178726                   NaN                    NaN           True   \n",
       "\n",
       "       shot_redirect  \n",
       "204              NaN  \n",
       "749              NaN  \n",
       "1651             NaN  \n",
       "2741             NaN  \n",
       "3890             NaN  \n",
       "4594             NaN  \n",
       "4647             NaN  \n",
       "4784             NaN  \n",
       "4918             NaN  \n",
       "6271             NaN  \n",
       "7406             NaN  \n",
       "7924             NaN  \n",
       "9525             NaN  \n",
       "10606            NaN  \n",
       "10877            NaN  \n",
       "12291            NaN  \n",
       "13231            NaN  \n",
       "13839            NaN  \n",
       "13975            NaN  \n",
       "14105            NaN  \n",
       "14173            NaN  \n",
       "14561            NaN  \n",
       "15815            NaN  \n",
       "15894            NaN  \n",
       "15928            NaN  \n",
       "19882            NaN  \n",
       "20227            NaN  \n",
       "20823            NaN  \n",
       "20917            NaN  \n",
       "21975            NaN  \n",
       "...              ...  \n",
       "152707           NaN  \n",
       "155048           NaN  \n",
       "158183           NaN  \n",
       "161937           NaN  \n",
       "162329           NaN  \n",
       "163634           NaN  \n",
       "163781           NaN  \n",
       "164961           NaN  \n",
       "165854           NaN  \n",
       "166107          True  \n",
       "166301           NaN  \n",
       "166464           NaN  \n",
       "166557           NaN  \n",
       "167304           NaN  \n",
       "168706           NaN  \n",
       "171222           NaN  \n",
       "171224           NaN  \n",
       "171226           NaN  \n",
       "171228           NaN  \n",
       "171232           NaN  \n",
       "171234           NaN  \n",
       "171236           NaN  \n",
       "172725           NaN  \n",
       "173646           NaN  \n",
       "175473           NaN  \n",
       "175627           NaN  \n",
       "176100           NaN  \n",
       "176213           NaN  \n",
       "176750           NaN  \n",
       "178726           NaN  \n",
       "\n",
       "[200 rows x 118 columns]"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "d = df.query('shot_outcome_id == 97')\n",
    "d"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>period</th>\n",
       "      <th>timestamp</th>\n",
       "      <th>location</th>\n",
       "      <th>pass_end_location</th>\n",
       "      <th>pass_recipient_name</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>eea20658-0e9f-484a-90d3-dccdc589d81f</td>\n",
       "      <td>1</td>\n",
       "      <td>00:00:00.187</td>\n",
       "      <td>[60.0, 40.0]</td>\n",
       "      <td>[49.0, 35.0]</td>\n",
       "      <td>Toni Kroos</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>ad723dee-c477-4604-970a-48f6f3e54e45</td>\n",
       "      <td>1</td>\n",
       "      <td>00:00:04.200</td>\n",
       "      <td>[55.0, 43.0]</td>\n",
       "      <td>[37.0, 59.0]</td>\n",
       "      <td>Niklas Süle</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>112</th>\n",
       "      <td>89cd84d7-c140-4322-9d13-1cd4abd61829</td>\n",
       "      <td>1</td>\n",
       "      <td>00:02:53.600</td>\n",
       "      <td>[65.0, 23.0]</td>\n",
       "      <td>[71.0, 27.0]</td>\n",
       "      <td>Marco Reus</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>129</th>\n",
       "      <td>f189456f-9790-468f-937c-251068dfb181</td>\n",
       "      <td>1</td>\n",
       "      <td>00:03:03.517</td>\n",
       "      <td>[60.0, 25.0]</td>\n",
       "      <td>[56.0, 38.0]</td>\n",
       "      <td>Sami Khedira</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>143</th>\n",
       "      <td>408b675d-cbcb-4edd-baff-32bf2c93107d</td>\n",
       "      <td>1</td>\n",
       "      <td>00:03:15.080</td>\n",
       "      <td>[67.0, 45.0]</td>\n",
       "      <td>[56.0, 32.0]</td>\n",
       "      <td>Toni Kroos</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                       id  period     timestamp      location  \\\n",
       "4    eea20658-0e9f-484a-90d3-dccdc589d81f       1  00:00:00.187  [60.0, 40.0]   \n",
       "10   ad723dee-c477-4604-970a-48f6f3e54e45       1  00:00:04.200  [55.0, 43.0]   \n",
       "112  89cd84d7-c140-4322-9d13-1cd4abd61829       1  00:02:53.600  [65.0, 23.0]   \n",
       "129  f189456f-9790-468f-937c-251068dfb181       1  00:03:03.517  [60.0, 25.0]   \n",
       "143  408b675d-cbcb-4edd-baff-32bf2c93107d       1  00:03:15.080  [67.0, 45.0]   \n",
       "\n",
       "    pass_end_location pass_recipient_name  \n",
       "4        [49.0, 35.0]          Toni Kroos  \n",
       "10       [37.0, 59.0]        Niklas Süle  \n",
       "112      [71.0, 27.0]          Marco Reus  \n",
       "129      [56.0, 38.0]        Sami Khedira  \n",
       "143      [56.0, 32.0]          Toni Kroos  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ozil_pass  = df[(df.type_name == 'Pass') & (df.team_name == 'Germany') & (df.player_name == 'Mesut Özil') ]\n",
    "pass_column = [i for i in df.columns if i.startswith(\"pass\")]\n",
    "ozil_pass = ozil_pass[[\"id\", \"period\", \"timestamp\", \"location\", \"pass_end_location\", \"pass_recipient_name\"]]\n",
    "ozil_pass.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def draw_pitch(ax):\n",
    "    # focus on only half of the pitch\n",
    "    #Pitch Outline & Centre Line\n",
    "    Pitch = Rectangle([0,0], width = 120, height = 80, fill = False)\n",
    "    #Left, Right Penalty Area and midline\n",
    "    LeftPenalty = Rectangle([0,22.3], width = 14.6, height = 35.3, fill = False)\n",
    "    RightPenalty = Rectangle([105.4,22.3], width = 14.6, height = 35.3, fill = False)\n",
    "    midline = ConnectionPatch([60,0], [60,80], \"data\", \"data\")\n",
    "\n",
    "    #Left, Right 6-yard Box\n",
    "    LeftSixYard = Rectangle([0,32], width = 4.9, height = 16, fill = False)\n",
    "    RightSixYard = Rectangle([115.1,32], width = 4.9, height = 16, fill = False)\n",
    "\n",
    "\n",
    "    #Prepare Circles\n",
    "    centreCircle = plt.Circle((60,40),8.1,color=\"black\", fill = False)\n",
    "    centreSpot = plt.Circle((60,40),0.71,color=\"black\")\n",
    "    #Penalty spots and Arcs around penalty boxes\n",
    "    leftPenSpot = plt.Circle((9.7,40),0.71,color=\"black\")\n",
    "    rightPenSpot = plt.Circle((110.3,40),0.71,color=\"black\")\n",
    "    leftArc = Arc((9.7,40),height=16.2,width=16.2,angle=0,theta1=310,theta2=50,color=\"black\")\n",
    "    rightArc = Arc((110.3,40),height=16.2,width=16.2,angle=0,theta1=130,theta2=230,color=\"black\")\n",
    "    \n",
    "    element = [Pitch, LeftPenalty, RightPenalty, midline, LeftSixYard, RightSixYard, centreCircle, \n",
    "               centreSpot, rightPenSpot, leftPenSpot, leftArc, rightArc]\n",
    "    for i in element:\n",
    "        ax.add_patch(i)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEyCAYAAACmpOSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd4VNXzxt9LKNJrABGB0JtIExCRItJBqgIqAiJKE1RUsKP4o9gVEEPvLXTpTToEQgcpoRMIECCk953fHy/73ZItdzebbCLn8zx5wt695ezdcObOnHdmNBGBQqFQKBSZnWzeHoBCoVAoFHpQBkuhUCgUWQJlsBQKhUKRJVAGS6FQKBRZAmWwFAqFQpElUAZLoVAoFFkCZbAUCoVCkSVQBkuhUCgUWQJlsBQKhUKRJciekRcrVqyYlCtXLiMvqVAoFIpMzJEjR+6JiK+efTPUYJUrVw5BQUEZeUmFQqFQZGI0Tbumd18VElQoFApFlkCXwdI07UNN085omnZa07TFmqY9oWman6ZpgZqmBWuatlTTtJzpPViFQqFQPL44NViapj0FYDiA+iJSE4APgF4AJgL4VUQqAQgHMCA9B6pQKBSKxxu9IcHsAHJrmpYdQB4AoQBeArD80ftzAXTx/PAUCoVCoSBORRciclPTtJ8AXAcQB2ALgCMAHopI8qPdQgA8Zet4TdPeBfAuAJQpU8bmNcqVK4dr13SvuykUCoUii1G2bFlcvXo1TedwarA0TSsMoDMAPwAPAQQAaGdjV5udIEVkGoBpAFC/fn2b+1y7dg2qkaTicWHOnDnYuXMn5syZ4+2hKBQZhqZpaT6HnpDgywCuiEiYiCQBWAmgMYBCj0KEAFAawK00j0ahUCgUCjvoMVjXATTSNC2PRhPZEsC/AP4B0OPRPn0BrEmfISoUCoVCocNgiUggKK44CuDUo2OmARgF4CNN0y4CKApgZjqOU6FQKBSPOboqXYjINwC+sdp8GUADj49IoVAoFP8ppk0DgBfTfB5V6UKhUCgU6cqGDQADcWlDGSyFQqFQpCshIQCzn9KGMlgKhUKhsCAiAihfHvjySyA0NO3nUwZLoVAo0sj06UDlyt4eReajYEFg40bg7l2genWgWzfgn3/cO1dCAvDgAQDcTfO4MrS9iEKhUGQGwsOB4cOB5cuBXLm8PZq0k5QExMQA0dGu/9g7LiYGeOIJIGdOYPVqIDAQuHnT9bHdugU8+SRw/bohzZ9TGSyFQvGf4vJleghF7azx79wJ9OkDNG4M5MkD5M8PnDkD1KiR/mMTAeLj3TMsjoxMcjKQL5/pJ29ey9fmPwULAk89Zf994094OPD118CmTcDEicAAN8ubh4QATz8NXL+e9vunDJbCYwQHA506AYsWAXXrens0iseVkSOBN94AevSw/f7p08DMmcCECcBbbwGTJgFBQY4Nlghw8iTXdtJqXHLmTG0c7BmYJ5+03Cd/ftv75coF2Kt8lJAA/PorMHq0a/exZUvg5ZeBCxeAAgVcO9ackBCgdGn3jzdHGSyFx8ibFzh/HmjeHOjSBRg7Fihb1tujUjxOiDB09csv9vcZNgxYtw64fRsoUYLHjB0L9O1r/5irV4F33mGIzJ5HUqKEc68lb14gewbOupGRwEsvAUeOAJ98Avj46D/20CHPjOHGDWWwFJkQ49Ogjw9DLXXrAt9/Dwwe7O2RKR4Xbt5keKxcOfv7JCdz8h41Chg4kEbo/n0aLnteip8fcPhwugw53bh1C2jfnh5enjwUPvj6Zvw4QkKoOPQESiWo8BiaRsXVkCHAwYN8qmvc2NujUmRGYmM9I5e2JjAQaNDAvuEBgBkzgFKluC5TqhS35chhlF7/N7h+nf/3OnUCwsK4ZhUW5p2xGNewPIEyWAqPUqkSUK0aQ4F//QU8+6y3R6TIbISF8cGmfXvPn/vQIaBhQ/vvR0YC334LtGoFXLwIjBvHSECDBlnPg3JESgoweTLXnrp2Zbjy3j3vjMWTa1jKYCk8St++nIymTwfmzgX27PH2iBSZicuXgRdeoNHKm9fz5zd6WPaYOBFo25Y5Rb/8Apw4QWFBs2Zcp/qv4OfHB4Jp04D33gOqVmXI0xso0YUi09LOrLXntGlUYZ04kTaVkeK/wdGjQMeOwCuvAPv2Ud7tSVJSGIZ+7jnb79+4Qa//998pshg0iN7YpEnA8887DiPq4eJF5kNVq5a283iKf/7h2lXDhkCjRt4ZQ2IiPbuSJT1zPuVhKdKNTp0YevngA2+PRJEZ2LULmDqVhuOttzy/pvLvvxT+FCli+/0vvqAAaOJE4IcfKFG/dIkeWbZs7hus6GjmK1WpAnz6qfvj9zT+/vSuPNDo121CQxmOdEWd6AhlsBTpyi+/ALt3A6tWeXskCm/z4YdA7doU5PTrB0RFefb8jtavjh4Ftm3jk36RIvTyduwAmjal4MIdUlJoFCpXBtavp0K2Sxf3x+9J7twBtm5lPpo38aTgAlAGS5HO5MsHzJvHJ9vbt709GoW3mTmTk6ivL42IJ7G3fiXCZOLRoymy+Plneh3btnH9yl2OHwfWrmVS7rVrQIUKnqlLKMJqHCkp7p9j9myge3dWtfAmnly/ApTBUmQAjRsz6fKdd7y38KvwPsnJNFjvvsvXjnKl3MGeh7VuHcOPYWFMoq1fn9vTarDq1WPkYOJEGsKQEKpk3SUmhmKlKlWAFi1YYcIdDAae57333B+Lp/Bk0jCgDJYig/j6a8azp0/39kgU3mLdOhqpmjU9f+6YGJYGs06jSEoyJQn/+Sfwf//H7ZcvA3FxrESeFsaO5bpZv358XaKEe+f59lugTBlg6VJGIooXp7LPHbZto2dlNMzexNMellIJKjKEnDmB+fO5ZvDSS0DFit4ekSKjMUqs04OjR2kIrSuvT59OQ7BjBz07Y6mwbdtYKy8tgoSDB/mZjh/n3/eVK+6fr1Ytjum11yhWypHD/XNlBrGFkZAQzxYPUB6WIsOoXp2eVp8+DA8pHh+uXmXI7tVX0+f8ttav5s8HPvuMVcY3brQs/prWcGBMDJWOkyfTwwLSllfWrh1rHPboQa/wpZds7xcSwnEb7HTqCA2lce7d2/2xeBIlulBkaYYNoxBjwgRvj0SRkRjFFrlzp8/5ba1f+fuzht306XxQMgoQDAZO6i1bun+9UaNoIF01wCkpqdemDAYm3D/9NEOWFy/aNlgrV7Ki/Pbt9gUZs2ZxTJkl71GJLhRZmmzZqGD64w+2dFD890lKshRbpAfWHtb9+0wirlKFdfVy5GAXAREmshcr5v6T/5YtVAdOmqT/mORkqmVr1KC835wvvmDR3jlz+P/j8GHLST4qCnj7beDjjxl69PGxLcVPSck8YguAn/nuXc8lDQPKYCm8QOnSNFh9+rAIquK/zbp19HTSq0Hi7duc1M0VegUKAB060JPKlQsYMQIYPz7tcvbwcIYYZ80CChd2vn9iokn5N2sWMGUK74eR6dPZ9Xj1alaNB1In2c6axZYkvXvzc9rrkBwQQEO9cSNw7px7n8+ThIYyfcHdPDdbKIOl8Aq9ejGJ1NWmcoqsR3qKLQCGA597zlJkYKy+HhbG2oW5cplk9GkxWEOHspiss+Pj42mcKlakQZozh7lV5kKPzZuBr74CNmygx2ePESMonZ82jUYyZ07b+y1ZwnzH0FDWRixblv/P/gs1BI04VQlqmlYFwFKzTeUBfA1g3qPt5QBcBfCaiIR7dniK/zJTplCGbCzhpPjvcfUqQ1wrV6bfNezlX7VuzXqB/frRk1++nP2v9u+nfNxVli6lGtFRwnNMDNfOfvqJsvLly20nM588yQjDqlX6crcmTKChjI5mknJyMn8HB3NN7OhRVts4fpweZ8mS/H3qlOM+X+mJpwUXgA4PS0TOi0htEakNoB6AWACrAIwGsF1EKgHY/ui1QqGbIkX4VPjwobdHokgvZswA3nwz/cQWgP0KF999Z8qP6tWLf2sHDjA0WaiQa9e4dQsYPpzrUHnypH4/MpIhx/LleY0NG7jOZWtcN2+yCPCkSfT+7GEwcNJfupQPd5oGnDkDnD5N4VLLlix9dv4814pateL62tixNJxTp3LfbFaz/K5dwN69aaukoQeveFhWtARwSUSuaZrWGUDzR9vnAtgJYJTnhqZ4HHD0H1aRtUlK4vrLtm3pdw2DgR6co5YiAEN4b70FrFjhejhQhOtWgwalvk54OKu/T5kCtGnDCumOkpGjomishgwBevbkue/do5dk9JaMvy9e5FqcCEOLFSowX+v77+k9GR8CUlJoKNesoSe7bh2NuL0uv1eusJzUrVtc52vRAujWDcif37X74gxPV7kAXDdYvQAsfvTvEiISCgAiEqppWnFbB2ia9i6AdwGgTJky7o5ToVBkMf7+m5NsWqtJOOLCBa7rFLc5+5jImZOT8tq19JJcwd+fa2FffmnaFhZG72baNBa8PXDAcTJ8ZCRw9iyNXrZsDNU1aEDjBFCUUakSaxF2787fFStS4diyJb2iggVpvL7/nsVtjWtymzYxBFi7Nr3HUaNshwCjo1nR3mDgOQ8fBpYtY9+6M2dYwd6ThIQ4f5BwFd0GS9O0nABeAfCZKxcQkWkApgFA/fr1VSU5heIxIb3FFoDzDsPmdOhAef3zz+s//8WLNFR79lDIERoK/PgjRRS9elE6bzQccXFsV3LhQmqPKSqKHlH27ED//iy7NGwYjVTRovbXmD77jD/GHDJNY7WY3btN1zVWtgA4xvh4qgRPnzaFEE+fppGrVo1GrUYNPkj8+y/vSXokGqfHGpYrHlY7AEdF5M6j13c0TXvykXf1JIC7nh2aQqHIqly5wjy79G4r46zDsDnJyTQY167pq6qenMww4ldfsYrF0KHAokVA587Ab79RQv7DDyajdOcOw3BGT6lhQworKlfmcfPmce1Ib1Lv7t00NMuXW25v2pQeV+/eNKT//EMD1KMH9zdWjq9Rg+Wq3n6bv8uXp2TeYKCAIzSUBr9CBX3jcRVvr2H1hikcCABrAfQFMOHR7zUeHJdCocjCTJ/OyTo9xRYAJ9zXX9e3744dlL8vXUojZA+j2OHbb7lWNG0ak3bz56cXtWcPt1euTI+lc2f+u0wZ240KV6zgOtf+/fqNlQhDe99/T6/p8mWTp7R3L6tdLFrE+1usGK/bowcwZgzHYk/6bvx83brR4DnaLy2kpPAeGctWeQpdBkvTtDwAWgEwd/AnAFimadoAANcBpFOVMIVCkZVISmI1kx070vc68fEMedWpo2//bdsYXvvhB1aXCAuzDN0Z/33pEg1BeDiNRdOmPK5ePXop9hJ3bXHwIHOjNm92Hh4ToRDi9Glg8WKq/377jeG+vHl53Tx5aJySkrh2lzs31+WeeUb/mLJnZymo9OT2bYY6PW0QdRksEYkFUNRq231QNahQKBT/Y+1ahsWqVUvf6xw/zrUgWzJza65do5x840YapPz5eZwxfFepEj0OEWDhQuY0de9OWb67TRAvXWLobc4c+0Y1PJxrZCdP0lDlzMn7duIEw5E9e3KtKTyc4orwcGDBAgo3Spbk2FwxVhlFeoQDAdVeRKFQeJiMEFsAXL/SK7jYsYNKPGPrjuLFqfIzEhTE8FtgIPfr0IEKOncTbh884Dm++gpo397+ftmzM3m+Rw+uORUvThFF9uz0rozXT0oCjh2j8rJrV0rho6LY6yszkh6CC0CVZlIoFB7k8mVWXejePf2vdeiQPsFFcjJDbIMHM4n5o4+YsyTCdaV27WgEWrakxPvCBXpW7hqrhASez5hv5Yj8+VkUuEULGquYGK6dTZzI6ycnM8G4Rg2GBQ8cYN3Bjz9m+PC119wbY3qTXh6WMlgKRRYnJYVP496qGWeOUWxhLOSanuj1sBISuH5l7OBbuza3PfccW5506UL5et++9Az9/Vm01R1EqMrz9XUvr+nXX1kHsF49qv/q1KFx3bmT7509yyTmiAiuZWXW4tHpkTQMqJCgQpHluXaNLSs2bGDFbnfXXNJKYiLFFjt3pv+17t+naKJKFef7Xr7Me7JgAZNnx46l2q9YMXosxmriQ4bQy+rUyf1xffMN167++Sd1SSRnhIXxwWPVKnpOhw4xbNm1q8nba9eOlTrKlqWx3rOH72c2QkKAunU9f15lsBSKLI6mMbR0/Tq9huXLWcIno1m7lgbE6MmkJ4cOsbisLRm5NVu30lOZMYPGdMwYChnatzcdv3YtjcyJE+6PafZsCjYOHHAu509J4TpXWBh/jh3jOlrFijRAw4czPGnrPMZ2Le3bM1crsxos5WEpFIpUGAyUEBvLB7VsyQnYlYoOniCjxBaAvvWrlBTmQI0Zw/vTvj3g58cKFQBl4fv20cC+9x5FFu7W09u+na1ydu1yXibKWBswKooFoMPDKaLQNAo1li6lB2UPY2WLChWA9993b7zpTXqJLpTBUiiyOCkpVJUNHsySPIcPZ3yL9EuX6CWsXZsx1wsMtN/B2CiyGDeOBiglhfckKYnihc8/B0qUoOFavJg5Q336AC++6N5YzpyhJD4gQJ93qWlcM5s7F/j0U66nZc9OQcjs2Y6PNa8g4uNDgUhEhPfCwLZISWEVjVKlPH9uJbpQKLI4uXPTW/jgA4YDs2fnk3tGMn0684YyQmwhYtvDSkxk2K9KFf6eNAn4+WcakWLFWHXh9ddNcvaePbmudeEC17Xc4fZtekW//EKxhB6OHwcaN2byckICJ/iiRTleZ5hXEMmZk/dg3z73xp5e3L3L9i2uJFjrRRkshcJD7N0L/PVXxl/36adZUaFYMSrUPF112xmJiUyOtefxeJrLlzlhG5/gzbv7LltGL2XXLooTtm+3bA766ac0ZvfvU2wRF8ewmjuTa0wMpesDBtA7ckZEBK/VrBk94Y4daUz9/Bi2zJfP8fHGdi1t2jAsWKcOC+Du3u362NOT9Fq/ApTBUig8xty5fGL2BkZF2siR9Bpu3864a69Zw4lXj2LPExi9q5gYejbly7MKREAAGxg2bWrad9s2y/5XZcqwjt6vv7JqeuvWDBe6SkoKvbVnnrFsO2ILEWD+fBrUpUtZWWPHDnpL3boxhDlggPNzdOjA9a4BA+idnTzJz7Zrl+vjT0+UwVIoMjkinDTbtPHuOEqW5NP+zz9n3DXN21tkBHv2MP+ofHkm/q5fzwoQ1jlZkZFU/Vk3Cf3sMxqs2Fh6ZqtW0Ut0hY8+okTe399xgvHp0wz/ffghX//0E9ff6tWjWCYggGttRmm9LYwt7u/do4dYqBAfEF5/nTlkp07ReGcW0ktwASiDpVB4hLNn6eVklJfhiE8/5USZEVy8SKPQrZvnzy3C3KgNG/g6PJxVIKZPZ3hsxw6u2dmr07d7N42YtTQ8Pp4eUuPGDKlVr07PTC+//07PbcUK+8Vdo6K4ptioEQ1K//4MZb71lskbXrKEhsr83g0aRC/Q15e1DrNloxd46RIFF7NmAQMHsi7i8OH8bLVrMyScWUivpGFAGSyFwiNs3kzvyt1yPp6kdGkWec0Ipk9nhYj0WGCfNo3rgjVq0CuqWJGTfo4cLE9Uo4bj463DgQANXZ8+PJ8xkfjSJYZz9bBmDdcI16+np2ONCA1R+fJcS2vYkKWqfvzRUjKfkMCw3g8/WP7NjB/PtiFNm1LAkjcv78PIkTzG35/eVfHizLkDTP2xMgsqJKhQZHKMButxIj3FFkeOUH5evz49qIcPuW34cOYfORMoALYN1tixVFS+8w7w0kvA1Kk0Ylu2OC9zdPgwj1u92tTt15xz54AmTRgezZmTScTbttluFvnXX/TszJWF9+8D333H/lpVq9LL8ven9P7vv2nIOnZkUvicOabjjB2IMwvKYCkUmZi4OEqLWz5mzXZWr+akq6d7ryvcvs1isFFRDH19+y3DYk89pb9+YGgof8zDhYGBNAADB7JsUOPGJol77dr0muxx9SrXi2bMMHk2RmJiWIy2Xj1K1j/5hJ5gx462Pe6ICK5bTZjA13Fx/HeVKvSizpyh51enjkmc0bAhrw9QHWneuuWFF5ib5S3BjzXKYCkUmZjdu9kiwlaI6L+MJ8QWW7fSm4iPN227d49GsEsXehn79wMrV9ID0luhfft2Gj1j6aXYWK4fTZ7M/Ks1ayhMyZ+fBqdbNyr4bPHwIRV6Awda1hkU4TpWuXL01Nq0YdPFL790HCL98UdW3ahenWtSlSvT4OzfD/z5J4UzhQvT4N65wzWt4cPtny9/fhqwQ4ec35f0xmDgQ0Z6GSxV6UKhSCOPYzgwOJhiAnfr2AUGslfUvn30DMzFCzVrcgK3d5xRcecI63Dgp58yvPjqo77ojRoxxNipEz9Lp07A119TWWheJSQxka1SGjfmmtfvv9PDqlCBxvbWLXo8K1fqq5Rx6xaN0s8/8yGncGHmjpmX0bpyhdtatWL1kmbNnN9nY1jQ3WodniIsjPcvvRLIlYelUKSRx9FgWYstUlK4xtKvn/NjBw1iw8KKFTm51aypr7J5RAQVaM7EFiImgzV6NDB0KMOXkydb7lesGEUdP/1EkUTTppalpUS4PpcvH+XvS5fSgJw8yTWoS5conDh/Xr+hGDqU5/vxR4YFd++2NFYHDzLEN2QIjePMmfpELc2aZY51rPQMBwIARCTDfurVqye24DAUiqzH9esiRYuKJCfrP2b27NnSt2/fdBtTehMfL1K8uMj58/zcCxeKVKki0rixyD//OD/+1CmR4GCe47PPRPr00XfdrVtFXnzR/vsbN4r07Sty9qxI2bIiBoPInj0iTzzB7+iPP0Ti4uwfv2CBSIcOpteffSby9NMiHTuKFC4sUro0z6VpIvnyiQQF6Ru3CD9v27Yi2bKJ/PabSFJS6n2WLRPx9RVZt46v4+P5OjjY+fnv3xfJn18kMVH/mNKD1at5v2xhb54HECQ6bYgKCSoUaWDLFoZu9LS5+K9glJRXqsQaeJGRDJElJQGjRjk/XoSKuoIFKf3Olo3rMM4aUCYmch9zhaAIvbukJK6faBpVdQYDz2kUIsTEACNG8OfZZ23nT6WkUDRRrx7Xra5f5xhPnuR5Hj7k+XPn5md31k0Y4Lhu3mQrkezZWc9w0SL+ALyPM2dSdDF1KsOMzz7L91aupCKwYkXn1ylShGtpx47pW+NLL9IzaRhQa1gKRZrYtIkL8o8TRrGFprFixE8/0SC88gql4s6M94wZNCh//EEVXIUKNEbJyY6PmzyZa0/16/N1fDzzlnx8OGGHhHCyv3+f60zZsrGKRc+eTD42iiv69LGfL/f55zQqGzZwnFu2sBpFzpxUAt65w9JIzkJ0cXE0nEuWAG3bUuU3cSKl7ubrOwULUip/7Bj7aD31lOV9HjrU8XXMMa5jedNgpWfSMAAVElQoXCUpSWT9ev4uXFjk5k3Xjs/KIcHz5xnKS0gwbTMYRDZvFmnUSOSFFxwfv2uXSMmSrt8zg0GkRAmRq1dN21JSRI4eFQkIEClTRqR9e4b1ChYUOX6c4+zYkeHKhQv1hW1//10kRw6R8eN5vRw5RIYOFYmO1jfOpCQRf3+RUqVEevYUuXiRY2/SRGTWLMt9HzwQeeklkU6dRKKiLN87e5bXN7/Pzli2jOfyJm+8ITJ3ru337M3zcCEkqEQXCoWLREXxqT0wkE+TTzzBUNLjgFFsYR5S0zTmSe3fb18aDtDzefNNhsBc7ZV04wZ/lylj2pYtG8cxeDDl5SdO8LsoW5aVLN57j+M9c4Z195x5fnfvUgyRkkJRxahRLLk1eTIrTjhChKHSZ56hV7V6NX9XqMCk3/BwyuqNXL5M5WGtWvQCrROhp01jOSd7pZ9s8eKLrLOYkqL/GE+T3qILXSFBTdMKAZgBoCYAAfA2gPMAlgIoB+AqgNdEJDxdRqlQZCIKF6bCbMkShsDatqVcunZtx8edPOn5JFt7REYyLJWSwp+4OE6eaVlrS0hgCSN7/Zc0zTKkZY4IQ2k9ejAHyVWM+VfmobyHDyn3/vFHJgK3agX8+y/LFt29S9m8o6Ky5kREMNR4/z7Xlfr10yefBxjK++QT3vNffuHfg3Gcyck0nhMnmu79gQMMTX75pe2QX3w8q7t37swHgeLF2XAyMZHJ6cYEYmtKluS+p0+b1sEymvQ2WHo9rN8BbBKRqgCeBXAWwGgA20WkEoDtj14rFI8FdetynWPfPj5Vf/yx/X337eNk2rkzJ9L0Jj6eVRJq1aKAwNj6Y+HCtJ131Sp+1kqVXD/2zz/pJY0f7961rStcGAz01tq0oXHJlo0CjnXruO/8+fqN1bZtFAokJ/OhYvx4Ch6ccf48DU/PnqZ1qHbtLI3q3Ll8uDGucy5dyr+DWbPsr08tX86/r2++YQqAjw+/u8mTgZ07HY/Jm/J2kUzgYWmaVgBAUwD9OChJBJCoaVpnAM0f7TYXwE4AOjRCCkXWp2pVTmpVq9pvMbF2LZNRQ0PpWbz7LguhHj1aBtev18Xq1ek3vu+/p0Fdt45eT7VqFBukBX9/ht9c5cQJNijcv9/9IrmHDln2nfr2W5NHYyQykgnH48ZZli6yx61bLCq7YQMN1pEjDCmWKcPw3fXrliFII7dv8/rLl/NBZeHC1BXhAVbX+OYb7gcA//d/DPVt28aHCXv4+9Pwff01HxJatKCopE8fepOOaNqU4cj333f++T3NvXsMnebJk37X0BMSLA8gDMBsTdOeBXAEwAgAJUQkFABEJFTTtOK2DtY07V0A7wJAGVvfvkKRBalenZNZQADlyrZYvJhP7BUqsHrBzZvcfv16Rdy7V8iigKmnSEnhtS5e5JN9zZo0mPPnp62S/IULDLfZC0fZIyYG6NWLlR3c8cwAej5Hj5pq+K1ZQw8lKMjSixoxglL2Tz5xfL6kJHor//d/DAOWKMG1H6N6L2dOek7Llll6zlFRVEROnkyv7tw5yvrt8ccfVDXWrcv1qNOnmRj85JO293/wgAbp4EEaxXff5RgHD6anPHGi01uFpk3Zq8vYQysjSfekYcC5ShBAfQDJABo+ev07gLEAHlrtF+7sXEolqHjcuHJF5N13RYoUEfn8cyaDpodKMD5eZPJkqtO6dBE5cULk1i0mnh4+nPbzjxwp8unK2PkCAAAgAElEQVSnrh83YIDIm2+m7donTlDpJ0L1nK+vyMGDlvscOyaSO7fIRx85Ptfu3SLPPCPy8ssif/1FxeKlS6n327ZNxDhdJSby3pYsyc9y5YrzMd+7x2TlgwdFmjfnd2JLaWgwMNn69depbqxShUo7g4HvHzok0r27a2rBsmV5nzKatWup1LSHvXkeLqgE9RiskgCumr1+EcB6UHTx5KNtTwI47+xcymApHleuXOGkf+2aZw1WYqLI9OmUdbdrZ2mc7t8X2bIl7deIi9NfccGcJUtEKlYUiYxM2/WnTRN56y2RiAiRqlVFZsxIPb6aNXkP9u+3fY7bt3mO0qVFli5llYpixUQOHLC9f3IyZfF//MHP0KoVJfR6GTlSpHdvGqCRI1NL6u/cEfnhB5FKlURq1GD1i5AQGjk9BtERb71FY5zR/PknH87s4QmD5VR0ISK3AdzQNM3YS7UlgH8BrAXQ99G2vgDWuO/nKRT/bcqVYzjJU1HxlBSG+apVY+hx8WKuxRiTagGue7RqlfZrrVqlv+KCkStXuI6yZIll40J3MCoE+/YFmjen2tCcr7/mfY2ISN36IyWFIbyaNamg+/df1u7r3JnS9UaNbF9z3z6G1MaNo2Bkyxb7nY2tuXaNcvqtW9l1+KefKJwwGHieV1+lWvTffynKOHWK4czt2zl+W722XMFb/bFu3EjfKheA/koX7wNYqGlaTgCXAfQHFYbLNE0bAOA6gFfTZ4gKhcKIwcBF/DFjaJCmT+eifHriasWFpCSgd28Wnq1XL+3XDwzkOuHdu6nzvHbvZhX1MWO4j/l64sGDLJ9UoADVdTVqUJjRoQMNSffuqa915gzHffo087iWL3fd6Pfpw3W3ZcuoYrx1iwrGGTOYEjFwIP9dsKDlcf7+ztff9NC0KcUeGb2OFRLCNI90Ra8r5okfFRJ8vBg4UKRAAZFhw1iYNDbW2yPKHLgTEjQYWFi0Vi2R+vVFNm0yrXOkJ+fOuV5xYfRohidTUtJ+/agokVy5RJ58MnV1jMhIET8/rp0MGMDwnYhIWJjIO+/wmAULTPcpMVGkdWuRwYNT37uQEJ7D11fk55+5JpiSwuK3p07pG6vBIDJkCAvc7t4t8vffIq+8IlKoEENljorlnjrF9UdbRXFdxWDgZ7e1NpeetGjBAsX2sDfPQ1W6UGQG3nmHKrH169n6u3hxhm8U+hFhvcKGDXnvxo5liKxNm4x5ep42jYo4vRUXtm0D5s1jC3c9LUOcsWYNw3oBAamrY3z4IZ/oO3Zk+O2llzjeGjUorz57FnjjDd4nEXpb2bNTvWe8dxERrB9YqxZVlRcuUGWXKxfH37Mnw5rOSEhgyHLePHo4vXszteCVVxgq8/d37G36+zPUaU9x6gqa5p2wYKZQCXryR3lYjx9167JlQ926IhcusB3H445eD2vHDtbmq1qVQgFPeCyuEBdHYcLFi/r2v3OHXsK2bZ65fmQkhQ8tWqR+b+1aelcRERSD+PqKPPccW5wcP556//HjRWrXNglA4uMpdCheXKRfP/t/l0FBFF048mZDQ0WqV2ddyWzZ6GWdPKn/c8bEUEV67Zr+Y5wxZYpI//6eO58zDAaqNK1rIppjb56HJ1WCnvxxZLCy4k/ZsmUdf4sKmTyZRUC/+YaKqMuXvT0i7+PMYO3bx6KoFSqIzJ/vWq8tT7JwoUjLlgzztG8v8vHH9vdNSWG/p88+88y1DQbKucuVY1jPnLt3GfLatYuvu3Zln6rZs20b9cWLGdoLCeH7ixbR2LVv79ywGAw0WEFB/Dl/3vRecDDD3j4+Ik89xXPOmeP6Z501y7IPlzPKli2rY36qLsDFDJwPiwjwwOl+tnDFYGWa9iIcd9ZCy+jMvCzI66+zptvChQy5vPgisHEjS/woLDlyhPfqzBmG/956S395IU+zaxeVa7GxTGC9do1hJnv8+itr+337rWeuP3EiQ2lJSZZKPhGKId54wzSeqChe31a34717geHDGao8d47qQE1j4nHz5o7HkJzMz9SrF8OC9+5RrXj0KEOPx46xvt/XX7PiycSJ7lUT8fdn52K9XLt2zel8aTAwBH/8uKR/mA6sZvLmm8CpU/bH5Yn5MtMYLMV/k8KFgeBgynqHDQN8fdm6fMUKoEkTb48uc3DyJFVdhw9zPWXVKvdLGHmK8+dpLIzS9Hz5+P3ZIiiIk/WhQ54xsJs2cZ1p7VoWki1f3vTe/Pn8e/r0U5ZVypuXEvSmTdlSfsQI077BwSyJ9e233D84mDL1V1/Vt7527hwVgpMn87P7+PC7qV+f62SnTlG12KIF0wv++sv1dbsTJ1gBpV07145zRrZspurtvXu7fnx8PMt6AfxOs2dnxflevWyvs2XI+hWUwVJkAObla3r2pBy7Wze2mejUyXvj8jbnzlGOvXMnW1ksWmS7Jp03OHuWXsP69RQTXL9uu8VGZCQnsSlT0p4/BLDtRt++FFmEhFhWaL9+nUZq61ZK1Z98kl6pCO+jr6+lwXrvPcDPjwbriy/42pV2HRUq0OD17k2PJVcuRgeuXDF9bzVq8LOXL88HMVfx96c4yRNiC2uMwgt3DFZEBI1zfDxLe508SW+7QQPbHQcyymBlmjWsrEhWHXdm4NAhlrqxbmr3ODBx4nKpUGGP+PpSDOBoodobREdzTejZZ1kto3Ztlg+yxmBgGaGBAz133Vq1RCZN4uvPPuPapwjXnlq0EBk3jq8DA0V69eJCf7ly/FsKCbE834EDIt99R2GGO8ydy3Wu0aNF8uThWlVyMgUaYWHcJzKSsn9XqmAYiYqiUOPGDdeO0zvvHDkiUq2a6+MS4f1etYpClsqV+Rlnz7a//xdfiIwZ4/ic9saNrLiGpXi8eO45PqG2aQOEhTFk81/n+nVKnRcv7oAKFTbiyJHUyaPeJiGB8vA8ebj+ky8fPRRb61fz5nE9Jygo7dcVoadRp44pSTkw0FR89o8/2NPLz4+ND0NDuTYVHEwp+rZtqXtxNWpkv5KFPZKTec6cOXkf2rWjZ1mhAu+Dj49lNYeff2aPKr1VMMxZsoRhu/TyTJ59luHGu3e5nqWH5GSOa/x4evujRzMM+/TTttcIjYSEOF7j9Bh6LZsnfpSHpbAmJIS11D7+OONl2xnFrVtMni5ShF7DpEkLPV781hNERzOxtmhRKusccf48Je+uyLd//NF+7b6ffmKxWWNyeUoKk87DwnhMnjyUzDdpIrJihSnBtkiR1LUF08KuXUwj8PMTyZGDXpWPj31Ze7ly7itf69cXWb/e9eNcmXfateP9ckZcHOsP+vmJNGsmsnkzP/Ps2SKNGjlPHG/Zksc4wt64kRVl7VmRrDruzMb9+yLPP8+inYmJ3h6N5+nWjVXE79zh6/So1p5WwsOZw9SlC8Nrjr6H+HiROnWY66OXNWtYnPbevdTvbd3Ka5rnIZ05w/2HDqXBeO4521Xn7VWGOHWKhWcPHdI/RiMHDvA+5MvHvKrx4+3v6+7f65Ej/HzupCy4Mu9MmCAyfLj996Oi+LBQqhSl9Xv3Wr5//76+kGqVKvzOHOEJg6UqXSi8TpEiDOncu8eW57Gx3h6RZ1mxgqEjvWGZjObOHUq8GzQAypYF3n7bsdpv9GgKLPQ2c7x6lfXzlixJ3T/q6lXKoRctYgFbEYaK33iD4zp+nGGzwEDLwr5GrMUKYWGsaNG4MUOFtoQithChoKJ5c4pIWrRgkdwXXmDVDnudot1VRU6bxhCoj497x+vFXsWLBw8Y4vTzozp1/XqqAl94wXK/IkUocHGECFMQMkJ0oQyWIlOQJw87pRorjIeHe3tEjwfXrjG9oFs3NgtcsIATqT3Wr2en5Rkz9JWGSkgAXnuNRu755y3fi43lA8qoUTQwc+ey2eHgwZwk332X60kLF+q71qpVbKwZH2+SYleo4PiY5GRWuq9Th+MYOJDXjIlhjtX27ZTBt2nDnCxPMHIkr2lddT49qFePzTyNYw8NZYHdSpVoZPbt44NE7druX+PhQ95rZ4bNEyiDpcg05MjBp9lGjfhUbezQq0gfzp7lfX7/fSa/rlxJL8bPz/b+t25xkl2wgA8WevjkE4ohPvjAcrsIDVL58kz8LVeOXta4cUycjojgA8ykSalrCNqjfHl6EyEh9BJ9fe3ns8XFsW1I5crA1Km87okT9Oxy5OB9Wb6c//7uO77u2JGGLK1cvMjfrkjsLWmHfv14f5xFI3LmZB3K5cv5IFCjBvPrjh/nQ4ctibqrZJikHVBrWGkhq447s2MwiEycyM6p5855ezSeJzOsYQUFcd1o7lzTtiZNRFautL1/cjJl5d9+q/8ay5ZxET88PPV7o0ZRMFGwICurnz5tei82ViR7dpHXXtN/LSPTplG8YazDaM2DByLff0+Z9iuvsAyWHlJSuMbaujXX8NJCnTosV1a7NteIXAUoKJMm8fvIl4+iCHvriadPM1XgiSfY8fru3bSN3RYbNvC+OMPefAklusgYsuq4swqzZnFS9USL98yEtw3Wrl0sFrtqlWnb6dOsz2dPRPD991SP6RUJXLhAFaH5d5eSQlVcvXoUM3z0ke0J9NdfqdB78ED3RxIRkatXec1Tp9haY+FC03shIez8W7gwi906EwjYIimJYozu3d1vA3L4MJWFycn8/PXrizx86PiY6Gg+YCxYwHwnIEBq1KARKlZMRNNoTM05dIhjLVGCDwT167s3Xj1Mmyby9tvO91MGy8tk1XFnJdas4eTqqM9OVsObBmvdOt5P64rqI0ZwMrTFvn2c+PQmuMbGMunY+NQfHS0ydSqVZDVq0Ktat872sQ8e8P1OnfRdy4jBIPLyy6bEYiNnz3IyLVxY5IMP0t4tID6e1+nf3700jHfeEfm//zONedgwekgRESK3bzNBe+pUKvtat2bR3ty56SUZi0gDPSUwkH29ypQxFQE2GHh8q1Y87o8/WAk+NlYkb970S1D/6iuRr792vp8yWF4mq447q2H0CJYu9fZIPIO3DNaiRTQ8Bw9abo+NZe7VlSupj3nwgKHZNWv0X2fgQE6uN26wSkSxYiKdOzNPp149kR9+sH/sG2+wOrqrVc//+ovSd6Pnc/Agq7j7+jKMaUtO7y7R0UzDGDHCtSaaERE0xvv2sT3KDz/Q2ytenCHQIkUYln3nHTaRXL+eOV7WXi0Aad+eIdMHDziGv//mmCpXZmTCOm+qSRORLVvS/tlt0b+/yPTpzvfzhMFSlS4UmZ6mTSl7b9+esmVX2rUryNSpVAFu2wbUrGn53vLlrDxiXQtQhKq5V17hjx4WLAA2b6ZEvlYtVi8/eJCCiLffpmrPWL3CmoAASqyTkykU0MvVq8CXX1IOv307MGEC6/2NHMkqDXql7XrJm5dqyebNKcj45pvU+8TEsIDwuXMUt5w7R0VeVBRl/FWrsmBu48ZA//4UgISFUVqup57kvHmskrJ8OatSZMvGwsndutmWyhvl7a1apfnjpyIjRRfKYCmyBLVqsfJ069bMiRkzJmM67mZ1RDiBz5jBCcu88rkRf3/bRuT6deD+fRohZyQns6r5J59Qnff887ymsfTUn3+yUO2BA7a/t9BQVkSfO5d5UHrVawYDJ/xWrWgIkpMpT+/Zkwq/P/5gPtbkyfrOZ83Bg5Rtt21rub1wYRrmxo1paGrWtDROYWGUjhsNU7duLCDr72+74PMLL7CdTNeuVP898YSjUeXEqlWskF+iBL/ftm0d/39o2pQPLOlBSEjqsljphl5XzBM/KiSoSCu3b1NlNXiw9xobpgWDQWTmzIwJCRoMIp98wnWjmzdt7+NMbOGMhw8ZvjKutQwenFqQsGcPw172OhcbDCwh9NVXXNt6+WV9146NZQHcXLmoCFy3zjJEl5zM6+bI4d5nE+HajLEAr5HoaApQChcWKVSI13/xRVaMWLeOgg/rv82DB0XKl3e87pWUJNKjh0jHjrZLIUVHU5AC3JA2bUR279b/OSIjuY4VF6f/GL3kz29bCWqNvfkSqtKF4r9KiRIM/Zw7xyfxhARvj8g1Zs0Chg17HZs2jcZHH9F7+fdfICXFs9dJSWE7jV27+GMvl2naNOZWuVqx4dIltvIwVkqoWZMJtlOmWFafuHmT3s7cufaTeKdPZ1WLr75iRYsGDRxf++FDFhEuU4ZVRGbOZKHeDh0svYx9+/j3khZsFY7Nk4cNI8+fZ8WIEyeYbFy2LMdQvnzqsJy/P/POHPXLyp6duWjZsrElSFKS5ectX56fE+iMTZuYG6aX/PmZVH3okP5j9BARQS83o4o4K4OlyHIUKABs2MBwV/v2XBcwZ8sW+6V0vM2AAcDEiStQq9bfKFEC+PtvdsEtWJDhpWHDgNmzOQkaJyy9hIRwEk1MZKfnS5e4ZmVdDslIXByrSNiqbHHhAkOC5ojQ+HXtyuTuPHkY5nr5ZVbM+PNPS4ORkAB0787PZB1SM5KSQkM1fz6N5qFD9tevbt1iyPHppxkOK1eOYa433rC9/4oVHGtaCAtjiNMcTWNlDF9f/rtKFZZ1GjKEzSetefiQSdn9+zu/Xo4cwLJl/G5ee43hzQoVmGy8cyfXrICjbn0We2Wa0kJICL+PjArPK4OlyJI88QS7vVaqxLpv5gZqwwY+0WZW8udPQKlSZzBqFD9DcDA9kfHjOTnt2EGDU7AgxRDvvcfPc/gwyw7ZY8EC7te5M43F+vV8srZHQICpfqA1kydzkjVn82ZOyq1bU+gwfjw9jNGjOZFaixvef5+L8aNH2x+Djw8Na/XqNIiHDtn3sN56iwYyd25g0CB6JB99ZHtfg4Hj79bN/rX1oLc1xzPP0HB37mz0gkwsWMDSTnprSd6+ze9k3TpgzRp+73PmcC0sLTRrxgcOT5KhVS6g02BpmnZV07RTmqYd1zQt6NG2IpqmbdU0LfjR78LpO1SFwhIfH6rf2rdnPbwrV7i9Wzc+XWclChbkhPLhh/Q2zpzh0/3vv3MyDAykYq9IEfY5evttGpX9+03lgu7e5ecuXpwGxPHCPY3be+/Zfi8yMnWYp21bjmvwYBqnyEiGAX/9NfVkOm0aQ3KzZzt/+s6Xj7+Dg2lgS5a0vV+nThQ1zJ/P886ebb947OHDPFdaJ3k9BuvkSXrHS5dSLNKtG/uEATTCju6zOefO0QurW5f3/vx53ovx42mA00qTJhSRuOq5OyKjDZYrKsEWInLP7PVoANtFZIKmaaMfvR7l0dEpFE7QNEqLixdnTH/jRiqubt/mk7uz4qeZmbx5ORE2bmzaFh8PnD7NCfHoUa4NnTnDSeP6daq1+valEXO0rnD6NL2kDh1svx8R4biYqTyqBdi8OdV55hw4QJn53r2OPTxr7HlXIpSOL11KD6FfP+Czz6jAs8eKFQxHphVbIUHzcX35JdfgmjblPWvZkn+HHToA//xDDzQhgVEAexw9SqO0axebUl68SBUiQC+rTRuGVadMSVvorXBhroMdPepa2oAjMqpKu5G0yNo7A2j+6N9zAeyEMlgKLzFsGFCsGMMyK1YAXbrw93+tk/ETT7BArXmrjUuX2B23WDFOSF99xTWwkiX5tF6vHn/XqcN9AJPYwro9h5GICMcGb+pUegAHDlhuDw2l1zVrluuFVQMDU0+kBgNDiwcPMq1h6VJK162L6Zojwu8+rV52UhK9SHuFfg0Gfh8bN9KodO/OB6fu3bmu2ro1Q7rvvmvb0OzZw6K7p04xtDl7tsnbNJIvH0PcrVpxn19+SdtnMoYFPWWwQkKci2Q8id41LAGwRdO0I5qmvftoWwkRCQWAR78zabcfxeNCr14MF3XtSk8jq4UF3eHcORqrDz+kUXr/fYbiIiJMgo67dzkxVqjAtZFOnZgj5edHA2MLWyFBI0FB9HgCAizDjomJQI8enKA7dnT9s1h7WImJFFScOUNvJTKSPZwchQIBGmuAodO0cO8eBSv2lH0+Pnw4GD+eD0zJyabwYb9+DJ2uXm0pOJFHfbdefJHhv27d+MDx0UepjZWRggW5frhrFz1LgH/jFy64/pk8LbzIrCHBF0TklqZpxQFs1TTtnN4LPDJw7wJAmTJl3BiiQqGf1q0pNujUia0Xbtygium/yNGjDD2NH88JctUqUxjPx4frN9WqmVR0BgNw+TLXnJ58kj2ZPvmEyrS6dS29sYcPTecyGEyTdng41Wt//glUrGg5ng8+oAf35Zeuf5aEBHoa9erxdUwMjV/OnJzgc+WiEfziC+ee2/Ll9HLSqlxzFA40snEjW3XMn88HJOP4AYZ0q1engGbHDqr8xo2j5/b55/RE7Xm41hQuDGzdagwtjsHTT/OB4YsvXPtML77ItdCUFM80j8xog+Vy8i+AMQA+BnAewJOPtj0J4LyzY1XisCKjOHuWiZKvvOLtkaTGE7UEd+9mnbwVK0zbnn1W5OhR58c+/7ypNqDBwNb0q1YxcbdDB1bI1zSRpk1ZUdzXV+T8eSbDdu4s8v77qc85cyaL2zqrPG6PwEAWeBVhfbzGjVmB3JiE/NtvTA7WkyxetaqpXmJCgvuJw1u3irz0kv33Y2OZDLxhQ+r3DAaR6tVZv69NG1ZWr1+fNQTdKZorwlYk166JAGdkwADWZXSHqlX1/Z3ooWBB/S1S7M2X8GTisKZpeTVNy2/8N4DWAE4DWAug76Pd+gJY40E7qlCkiapVuUi9bRu9CE+orDILGzYwlLRokaVs21EYz8ipUxRntG/P15rGBNwuXSheWbeOYcIcOZgYHBLCfVq1osewYwePW7CAir2UFIbyRo9m+Mt4/b59ue6kF+P6VWgow1YNGjD0lz071YNjxzoPBQJMwo6O5tpRWnGmEJw4keuC7dqlfm/HDoYU33mHocKXXuK9adXKcfKwIyZNMoY5T2HjRn7Wa9dcP4+nwoJRUQzbFs5AfbieW1cCwF5N004AOARgvYhsAjABQCtN04IBtHr0WqHINPTqxYn3n3+4XuBJOa+3WLqUn+XvvykwMceZsg9wLrYAGJ4zGLhOkpjIiXnJEp57yhSuD/79NwviFijAMNNzz1GAYUx47tGD70+axHUbZxw6xETgJk34vf3yCyf2lBR+3q++Ys6dM1asoBF31yiY4ygkePEi0wp+/dVye0QEa/t17EhjFxDAh6a1ayne6NWLBswdvvmG63nAQfj6Mrl44kTXz+Mpg5XRScMAVC3BtJBVx/048frrDCe1b89wV0yMt0fkfkjw9GmRUqVETp5M/Z7BwBYVjmoCxsSwhcW1a46vc+cO242Eh4sUKMDaeGXKpG4xkpjI0F2fPqwn+MYbItWqsaZg/fqs8/f00+zr5KwZY5kyDD1OnWq5/ZdfWKdPbxjt2WdN/aFE0hYS/PxzkbFjU283GBjmM2+Tcvcu+4kVLcp6gPnypW5pkpAg0rYt75e7YUER07wTFMTvxlWuX2fLF1dao9hiyxbHIVNr7M2XUO1FFArSvTsFAhs3Mtm2VSuGvTIqjHHr1i0EBQXh8OHDOH78OCIiInDjxg1ERUWhSZMmyJs3L6pVq4bnnnsO9evXR6VKlZDNjntQvTqVYbbaZcTF0Zt0VBNw2TJWUXemfTKGFletYihr2DDWA7RuMfLxx0ChQqlDdTExVLUFBNC72rKFrT5mzbJ9vY0bKY5ZuJA19IxcuMDSSwcP6vOYLl1i/t0LL/D1gweUcbsbDr5713ZoceVKjveDD+hl/PQT23289hpDm2vXUiRiXRIrZ056gG3aMN9q0qS0eSfmAg9XePpp5sedPcu/KXfJcMEFkHk8rLT8lC1bVr+Z9yBQHlamJyaGXsK9e3yq/egjVi8PCUmf6xkMBtm+fbu89tprUqpUKSlatKi0adNGvvzyS1m5cqXs3LlTvvrqK+nQoYPs2bNHNmzYIBMnTpQePXpIuXLlpECBAtKyZUuZN2+exMfH677urVtszuiIRo246O+MoCCR2rXZubZ3b3pR1p7b3LlstGirSvcHH/AJvndvNmK8dcv+tTZs4ML9M89Ybk9Opjjk99+dj9fIxIki773Hf0dG8pyAiI+P/nOY07mzyMqVltsiI0VKlxZZuJCNFgsXFhk50lQN32Cg+MRRJfWHD0Xq1rXf4dkZnph3+vZN7c3qoWzZsmZz75cCfO/SXG0LPG4dh71lOJTByhp0704VmwgnlIkT2UX33DnPXSM6OlqmTp0qNWrUkOrVq8uUKVPk8uXLYrARd3EUErx7964sX75cXn75ZSlRooR8+eWXEqLDup49y26z9jhxghOtdesPW2zfTmORNy/bc9y4Yfl+UBAN0qlTto+Pj9cX8po1i2HAgQNFPv3U8r2ffqJK0ZXQWYMGDFPFxoq0aEEVXaVK7hus558X2bvXclvfviLlyvHzf/NN6rDfzp0Mi9oLty1cyNDg3btU6znqvmwPT8w7M2cyZJuWaw8cKPLnn+4da7VdGayMQBmsrMGiRVzDMmfmTMq3Dx1K27mTk5Nl4sSJUqRIEencubNs27bNppEyR+8a1r///itDhgyRQoUKydtvvy3hDpoOBQayRbw9hg5N3dfJHqtWcTLNnVtk40bL9+7epbEPCNB3LntMmSKSJ4/Ijz9ybXH5cpEzZ2hQz57lWpAr6zPXr/OYxESRLl3o3dWvzxb02bK5N8YKFUQuXOC/9+9nDyxNo/w/MtL2Mb17c83UHg0amNbYbtyg8fP3d21cnph3Ll7keqir61jm127XTuTvv9071mq7MlgZgTJYWYOICDaZs84RWrOGT8pbtrh33uDgYHnhhRekefPmEhwcrPs4V0UXDx8+lCFDhsjTTz8tW+wMdssWkZYtbR8fHU2xhbWnZI9ZsyhU6NnTcntSEj2X0aN1Dz0VBoPIt9/SGIwZQ4NSrBi/C19fNuhs1Ehk8mTXzvvbbyL9+/Pf8+eLXL3KcN2SJTQy7pA/P0OCzZvTsFSo4NgYhYUxvOlIYPLxx5ZCjuBgGo7Fi3H+F8UAACAASURBVPWPyxPzjsHA69prqqnn2s88I3LsmHvHWm1XBisjUAYr69Cpk8iCBam379rFiXLpUv3nMhgMMnXqVClatKj89ttvkuKi5MtdleDmzZuldOnSMnToUImOjrZ4LyBApFs328fNnMnPr5dmzeiVxMZabv/oIyr+3O30nJIiMnw4lXyhoSL//stJs3hxhivXrGGIrHlz11V0L77Ibr9G/P3p7YSGuu5hpaSYDF21aiLz5vEe1qvn+LP/+COTnR2xdi3XBs05eZL3wHz8jvDUvNOrFx9OXMH82oUL00i7c6zVdmWwMgIAsm7dOqchIIX3mTNHpGtX2++dOCHy1FP6nuoTEhLk1Vdflfr168vZs2fdGktaKl08ePBA3nzzTalevbrF2tbMmSYPw5qGDfWHbrZsYcv3GjUsty9cyKoOeqsaWJOYKPLmmyJNmpiEGgYDW8wXKMBw5b//Mqx3+bJr5w4N5XnMNSodOtBrcUXWnpRE41S9Or2HIkVovB48cB4+Nhi4XrZvn+NrPHhAz81axHLwIB+cdu60f+zu3bslPDzcY/Pd1Klck3MF47Wjo1m9w5WpTxksDx2fluvWrFlTPv74Y2W0MjkPHnBitHJM/sfly1S9ff21/f+EcXFx0r59e+natatLCj5rPFGaaeLEiVKhQgW5evWqiDBfacSI1PsdP07vRY9XFBLCiblgQS6oGzl2jGG7EyfcG2tsrEjHjlxHtM6De/ZZejEJCVzfcWUR38jUqcy3MxIdTaMQHq7PYMXF8RzlytG73LLFpJQUERkyRGTwYMfn2L5dpGZNfRP4s8+aSkdZn8PX17ZhDAgIkOLFi0tQUJDH5rszZ0T8/Fw7xnjtc+f4/8WdY21s91xpJoVjdu3ahb179+IDR/0OFF6ncGG2dd+40fb7fn7s3/T33+yqm5Ji+X5CQhJ69OiB/PnzY+nSpciVK1f6D9oBn376KUaMGIEWLVogNDTUbjuQadNYHshZSaPkZFZheO01VqqoXZvb799n5YhJk4BatVwf58OHzDsqUIClm/LksXx/2zZWf//1V1Yr19Po0Brr3ldbt7K0U6FCjo+LimIOVfnyzM1bsIAFalu1YpWL4sU5tpUrmQ/mCGOTRj15VfYqTbz0EntrdepkrGhBAgICMHz4cGzevBn13E2+skG1arwHN264fqxXcrCgv72Iwg5FihTB5s2bsWHDBixdutTbw1E4oHt3xy1HSpTghHX+PCfvhARuFxFUrHga4eEVMX/+fORwlJ2bgbz//vsYMGAA2rZti7Cw+FQGKyaGJZUGDHB+ri+/ZEJygQKciAoXptHu3ZsGq1cv18d35w4bPD77LKuZ27ptxYqxkeRPPwEzZ7peUun+fZZ1Mm/hYSwbtW2baZsIsH276ZgxY2iogoJYm3HdOlPCMcCk4WLF2CJkwgTHieZ37zJR2rqRpT0ctarv3Bn4+Wd+nsuXgQsXLmDIkCFYv349ahufIjyEprlfpkkZrCxMgQIFsGzZMrz//vu4ePGit4ejsEOXLsCmTezaa48CBTiBibBAbFQU4O8/A7duVcLixf+XaYyVkc8//xyNGzfGpk0HU9URXLKEtfmcTSzr17PKxLx5PKZoUd6HL76g0ZrgRpXQq1d57a5dgT/+sG+IkpNZKPf771lL0FXWrKFHZPTcUlJofDp1oqdsnIzXr2fPqY8/Zk3CkBD2DVuyxORNmhMWxqoZuXMDb73leAyzZ9OoO/PojLz4Iq9t7cUbeeMN9r1q2dKArl2H4rvvvkOdOnX0ndxFsprBUmtYHrzu5MmTpU6dOhIXF+eV8Sic06yZvmoPycmsmvDMMwlSoMArUq6c+2tW1nhiDcucmJgYyZNnm4wcecRie4MGzpVnV69SobZ3r8jhw5RuN2pE6XnZsq6pwIycOsV1sz/+cL7vuHEiL7/sfl279u2ZZ2dk/35T1YzZs6k4zJ6da3B583Kd7/p15+cdOpT720uONpKSwntma03KEVWrOpeEN2y4WgoUuC5hYZY3x5Pz3dGjHItejNceNMj11AN744Zaw/IOQ4YMQYUKFTBy5EhvD0Vhh+7d2eDPGT4+wJ9/CuLjVyA5eSHq1fPumpUjYmPzIDm5OWbMWI/IyEgAbCp4+7ZlqMyaxETWCPzkE4bDFi9mCDAsDPjtN67dFCvm2lgOHgRatqRX9v77jvc9fZpV2WfMcK+mXkQE28x36GDatnatqeZh27YM+SUn08O7dImfS09Dz02b6CHWrOl4vx07uPbmapt4R2FBAFi2bBnu3RuJt9/2Rbt2Gh59rR6nVi22dLlzx7XjvNUYVRksD6JpGmbMmIE1a9bg0KFD3h6OwgbdujFklJjofN9ly5YiV65xqFkzD7ZvB06eTP/xuUpSEjvXFi3qg2bNsmPUqFEA9IktRo2isGDkSBaIXbqUYdCrV9nOo25d18aydStDcbNmmbocOxp3v37swFu2rGvXMbJuHSd+81Do2rUcA8C+WMa+X1Onco3SFgcP0lifOUPjtmcPcPMmiyU7w98fePdd1w2uo1BcTEwMhg8fjsWLF+OXX55AvXo0wnFxrl1DDz4+NMx79rh2nAoJpoG0Hu/p606ePFk6dOiQwaNR6KVRI5FNmxzvEx8fLyVLlpTAwECpUkVkwgRKjh0VNdWLJ0OCgwYx56hKFZHAwEgpVaqU7Nt3QgoXdlzgd8UKyriNVRk6dqTsv04dysAdVIGyybJlDC3u2aNv/++/ZxJyWrJBunZl2M9IcDALAJsnHScmMkHWUSLyhg1sCVK5MnPQsmdnexBnYT5j/pc7XZZv3LDf4uOHH36QV1999X+vk5Mp2+/QgZ/H0/PdxIm2u0jbwnjtokXZhsYV7I0bKiToXQYMGIDjx4/jyJEj3h6KwgbO1IIAsHLlStSsWRMVKzbArVtcrF+wgB7a0aMZM05nTJ3Kp/RFi9gS5Kmn8mPw4MH47LMTaNqUjRZtcekSMGgQ240Y1W9FiwJPPglcuULvZ9AgthfR81Q/bRpbbWzZwqd1Z5w6xdDc9On6PJNZs1I3gYyJoerPvOXJ33/TuzIXeOTIQe/JnugjNpZeVdGi/HeOHCYxhKNuwwDFFt27O+/ybIvSpekZnj1ruT0uLg4///wzvv766/9t8/EB5szhvaIAxLPTdtOmjsOT1sTF0Xt1NVzsEfRaNk/8PC4elggTO/v165eBo1Ho5fJlekuOkmmbNm0qAQEB0rs3F+6NBAe77n1Y4wkPa8cOehPGWnB58ohERYncvHlTfHyCJCDAdqfKuDi2tjAXRCQmMtG2VCl+vrx5Rf76i835Chbk0/3q1TzWHIOBogk/Px6nh8REenEzZujbPy5OJGfO1J5IQAA9NHOaN9cnqLlyhYKBtm3pSTVvzrJKY8awHFPfvvSyoqLsnyMlhZ87LcWT+/VL3eJj9uzZ0q5dO5v7x8ZyrMBfaW6+aE5iIu+DniomACQ4mFVPXMXefAnlYXmf/v37Y/Xq1Xjw4IG3h6Kwws+PT7j24vZnz57FhQsXULlyZyxebNnSvGJF/fLl9OLSJYojFi0CKlSgR5SQwDyqO3dKIWfOMggLW2Dz2I8+Yv7RsGGmbTNn8ql59Wo2HixUiEmw27czJ61JE+D33+mB9elDTyY+nmKNRYuYcF2xor6xT5jAtSTz9SGR1B6Ukdu3gZIlU3ti1snCDx4AR45Q8GFNUhI9iE8/BWrUABo2BA4f5hhCQoB//mES7YQJXPerWZPjsdUo08jWrbxP9evr+9y2sLWONXXqVAwZMsTm/rlzc40OqINRo+zfM1fJkYNJ9fv26dv/xg0vrV9BiS7SDV9fX7Rt2xYBAQHeHorCBo7CgtOmTcPbb7+N1atzIHt2hgBPn87Y8dkjMpKquBEjWBkBYK5YgQKc1DdtAl5/PRzTp/8FsZrRFi/mRGuuyouI4ET+2mvsrmtdMaNECSbP7tjB8NXzzzPJt2BB5m19/nnqzrr2OHGCOVnmocDjx2ns7EXPQ0NpsMyJj+fn7NLFtG3jRqBFC1M+VlgYk5V79uRnGDmSE/7s2TznnDkUqxg/6717DAH+/jvDXXnyOA5XulLZwh7NmtFgGb+m8+fP4+bNm2jXrp3dY/LnB4B22LDBvfw4e7gSFvSa4ALKYKUrzZs3x4EDB7w9DIUNunenbDsmJrUkecWKFejTpw+MhUs6d2YVA2PlC2+RkkL1na8vPQ8jEREmpdyoUYC/f0WEhobi6tWr/9vn3Dm2ZQ8IME3SBgM9tYQEysutz2VNyZL0SgoXpuEaNYrraE8+ScXfhg321ZdGVeAPP5gmu3nzmPQ7bpx9TyU0lOc3Z+tWVs8wX2MyVrc4fZpjq1SJa3Bt2lD9FxQEfPstv2vr9az4eGDsWOCvv2jUoqP52x63btEre/11+/vowc+Pvy9f5u/9+/ejadOm8HFWRwsPsGULHzymTEnbGAAaTKPxvHCByd6OUAbrP0rDhg0RGBjo7WEorPjuO05KhQqZjJaRsLAwREZGwmCognv3OHmXLcsqDP7+XhsyAFaeiI6mjNo8b8bcK8qWDfDxyYbnnnsORx+pQ2Jj6U2MG2dZ1WHsWE6WTZqYJN+RkfZFBJGRQLt2DBtu2UKvZfduiijq1gXGj6dx6d+fHo+58Ro3DihVikYrMREYOpTVLXbupBdkD1sGyzocmJjI0kgdO3LfceN4f1aupIG1Pt6aH35gPpLRsYmKcmywZs2iR0pvx32sSyMFBgaiYcOGuo4tVYqlpyZMoBjIXUSAqlX5nZ45w4cOR2WoAGWw/rPUrFkTISEhCA8P9/ZQFGbUrs2wWuPGVMpVrmx679ixY6hTpw6iozW8/DJQvTpw8SJzlPr189qQsWABxxoQwMnq7l3Te7aMTN26df9nsIYNo0fyzjum9zdsYGiufHnLnCl7RXTDwhiCrFKF61Y5c5ree+opem979jDsV7s2jdGTT7KO4Z9/0hOYNo3eSfPmzHM6fJhrSo6wNliJifSmunUzbdu9m5NuiRIMT7ZowQlYD5cuMUz522+mbY48rJQU3jd3ivTawtxgHTx4EI0aNdJ9rJ8fDfXHH7NElTtoGgv7vvoq8MwzzG1r3NjxMSEh3kkaBpTBSleyZ8+OunXr4vDhw94eisKMV15hKGvVKoZ2zA3W0aNHUbduXTRoADzxBP/zBgdzArQXKktvDh0CPvyQC+7FijEkGBZmet9WGM9osObMAQ4cYLjLfL0lWzYann37LCd/W+e6fp3179q25X1zFLEqXZrra/v2cX2qalWKM2JjOcnXqsXzrFypTw5ubbCM35e5ZN+8uoUriNCYf/opUKaMabu5h3XggKU3t3kzQ5GuJlXbw1jxIiYmBsHBwS4XuK1enUZm4EBTcV9X6dGDaQzXr/MhwrwIsC2U6OI/jAoLZk66deOTf0yMZcuLY8eOoe6j2ejAAXpiFy96TpHlKjdvcqwzZ5rKBBUvbulh2fKK6tati0OHYvHJJ4Lly1k+yBxjNfAWLSxVj9be2rlzNFbvvUevyRWRwdNP01tp0YLqxF27aGwnTeIEuW2bpQLTFtYGyzocKGJZ3cIVVq3iJG3dGcgougBovKKiTO8ZxRaeompVnn/jxtOoWbOmW21r6tdnubHevVm1wx0++4zebmwsvWhHZImQoKZpPpqmHdM0bd2j136apgVqmhasadpSTdNyOjtHZiEqKgo9e/ZE8eLFUatWLQQFBaXbtSpVqoRr166l2/kV7vPaawzvmIf6Lly4gKpVq+LhQz5JNm7MySs01DPXDAgIwCeffIJly5Zh9OjRSLFXshuUmnfpwvUecw+iWDHKuA0Gvo6MTO0VFSz4FMLDp+O77+Lsht2MtQPNMTd+QUE0Nt99Rw/PVY4d40NB9uwM423cSAN4+DC9pM8/Z3hz0CCqEG0ZL3ODlZJC6b25wTp1it6is9CiNdHRNFRTpliGNwH7a1ghIQx7utNqxR7Gdazt2xNRUW9ugA2aNqXysXNn2yXE7t69izZt2sDX1xeNGjVCcHBwqnGsWcNzOG7xkgsPHzpPqk4vXPGwRgAwz8ueCOBXEakEIByAjq47mYMePXpgzZo1CAsLw6lTp9CiRQvcvHkzXa6VO3duxKVHETCFR3jnHctadrGxsciXLx8CA4F69TjZVqrEsGBa2b17N/r27Yt79+4hLi4OkyZNwtixY23uK8L1n8qVgdGjLd/Lnp0GypjiZ+1hiQCDBmnIleswuna1XTX17l0gMDC1Z2IMCe7YwTp8/v5s/+EOBw7Q2BcuzPBjt268j+XKcd3l0CGOoXx5huWeeooS+n/+MVWbMDdYe/bwyd6orgNM4UBX5eVjxzIc17x56vfsrWHNnEljZe2tppVmzYAzZ4ohj3V3Sxdp357rce3aWf69GgwGtGzZEjt27MC9e/dw6NAhvPDCC4gydx3B78pZDUigFEqVcr1vmafQdVlN00oD6ABgxqPXGoCXABjrXs8F0MX20ZmLpKQkbNu2DQlWGuXt7gaAnaAMVtYiPj4euXLlwsGDlEcDnjNYixcvtvhbiI2Nxbx582zuO2ECQ5H2KpmbhwWNBssYvpw2jfJuX9/v7P7tBQRwf+s5MjKS5+jVi/u4szYE0KMaM4ahplmzmJg7diw9RvN50s+PxiooiAbOaMyMxuvePVOel3U4EHBv/erMGY7pxx9tv2/LYCUn87vwZDjQSNOmwPnzJZDbkTRRJz178r63amXqJHzjxg1cvnwZyY9cWBFBQkKCm2vrT3tNcAHo97B+A/ApgEdBCBQF8FBEjE58CACblcs0TXtX07QgTdOCwsxXir1EtmzZkM3G40F6tTwXEWhpyS5UZCiapkFEcOAAs/8BzxismBjg3LnWAL6y2J7TOh4FTsJTpnCNxd4cZm6wIiNZlWHnTnokX31FYwPE2fxbB2yHAwGGkxYsYGJus2a6P97/SEnh9YcM4ecYNMhkcN97jwv6ffuawpnmlC/P3K4jR1g9o1AhHluuHMOiS5ZYJgvfukXj+uKL+scnwrGNGZM6IdlIVFRqQ75pE43os8/qv5ZennkGiIrKg5gYB6U1XGDgQLZ2adWK4pxcuXKlCj2LiJtzXmmvrV8BOgyWpmkdAdwVEfNcdFszsM1laRGZJiL1RaS+r6+vm8P0HD4+PhgyZMj/3O8cOXKgUKFCaG/sQ+BhYmNjPfLkpMgYcufOjdjYeAQGmjysihXdN1j37zNh1c8PyJnzZeTOvfV/7+XJk8eiyCnANZkBA6iis1e8FrBUCkZEcL2rRAnmQP34I9Vs0dFlbP7tXb/OtaTWrS23//QTt//2m3squAcPmAu1Zw89JlsK7UmTaFTHj3d8rooVKbWuUYNijeRkGpJWrSih37uXXlzbtiwtpJeFC+lBDRpk+30Rvv/EE5bbPS22MMfHB6hU6Q6uXPGc6zJyJO9fmzZA7twl0bZt2//9LeTKlQt+fn5o4GoTLwCZ3mABeAHAK5qmXQWwBAwF/gagkKZp2R/tUxrArXQZYTrw66+/Yvz48Wjbti369++PI0eOIH9aswDtEBMTk+bYtCLjyJcvH06dSkCRIqaFZXc8LKP6rFIlhmb27AE2b86PQ4emo2HDhihdujQWLlyI183KJdy7x0Xz335z3hDQOiQYFkaFV/Hi9FJ27xbExd1CXhsF8ZYs4XqS0bkT4TrZzJk0FK4KGAAKLOrXp8x62zb7vady5WJo788/2bbeEcb1q8qVmaQ7ahTXt4oXp5c0YgQQHg7s32/bY7Pm4UNK7P/80740PzKSa4TZs5u2xcfzGo4SnNNK9er3ERLi53xHF/juOyaFd+wIzJ0bgM8++wytW7fGkCFDsHfvXuRwxdL/D+8aLJeqrQNoDmDdo38HAOj16N9/ARji7PjHqVq7kSFDhsjPP/+cAaNReIJ+/frJW2/tlNdfN22LjBTJndtxTyUjp0+LvPWWSOHCIh9/bLsnla1q7YmJIs2aiYwapW+c33wj8vXX/PeLL7LHFyDy6qscw/nz58XPz8/msbVrs9q7CCvWv/OOyHPPiYSFsd37hQv6xmBk7lz2dlqyRP8x+/axYr6ja02fLtK/Pyu1lysncuKE6b3oaFaVHz1apEYNkdKlRT74QGT/fvvf09ChIu+953hcFy7wswwbxteb/7+98w6PourC+HtDDTUJCR1CEaRLF1SagHSQKkWKIHwgAgoizYqAWCgWFEEQBBSUoIiISBULIFXphBIgtNBBSEg73x9vxhR2k9nd2ewm3N/z7JNsm7mzm8yZ096zlsrkxn13sWDBQcmZ85Cp1zpyvouL499jixYid+86u7qk+14hISHOvtezau1jAIxUSh0Dc1rzXNhWpsURuRWN56lRowb++ivLf+FAgFf3+fIxZ2KPP/9k8r9pU/axHD/O0FxqYb2kDB/O/UyebO71KUOCfftSMeGbb+gh7d69GzVq1LjnfYcPU7aoYUNqCHbvzhlYGzawXD41aaaUOCKxlJJHHrFdhJEUw8Pas4ceT9Wqic+tX0/V9bffZsjwxReZ8xowgDmvUaNYgWj0z+3axV6lKVNSX9elS8mrAOPi2As3aJD5Y3OGrl0fQFRUUZw6Zbuq01l8fOg5+/qyAjCVLgqTlPD6kOB/iMhmEWmb8PsJEakrIg+ISFcR8bA0qPcRGRmJQ4cO/deIqvF+atasiVOnCiczWIDtsKAIw1oNGlAct1UrnvzHj09bjy0pn3zCkOGSJamrSCQlZUiwRYvkxQeGYofBW2+xMu7rr2lYIiNZ0h4fz2MwIuLXr9OI7NuX+v7PnnVMYskWgwbRcPXrZ7sx2zBYRnVg0tqlpNWB777LJujXXwcOHmS/V548NOKG8erTh8YqICD1NUVEJDdY27czn5XUWLqDXLmywc/vMBYtOmn5trNmZRj4+nV+5mbCp/bx/hyWxkl2796NihUr6qKLDESpUg8hMrIwKlaMSfZ4UoMVE8NKuoceoiDt0KFUuR4yJHXRVFts3Mhcww8/OCb9lLJKMOV7UxqsXLmo8/f110CzZsxVFSpEj8woFouKolHYvp05tHfesd3M++uvHEXStq15iSVbKAV8/DE9V1uejzFaJGU5e1wc5YjatWNRy9y5LI03qFyZhS6HDvF1hw7RoE2cmFhCb0+5JCIiuajt6tXpp+pQqdIVrF3rnhaYHDnYdH3oEA24M8otFDMOsJufTA+0wXIjOhyY8Th0KC9y5TqMfft2J3u8XDlevX/0EX+fN48hvz17GFZLmqQ3y/HjHFHx9dcs6XYEIyQocq/BioqKwq5du5IZrNKlqe0XFUUPy9+fs6GSenRGODAwkAUZq1cz7GbMAhMBZsygQsgXX9CTdLWBNGkRxk8/JX/u/HmuNzIy+fiRv/6iwS5ThvOrOnVKrgVooBSN8s6dlCxauZLH1aMHB1+OHctQYdKTd9KQYFgYB1jaK3+3mubNc2D//jRcQBfInZvf6caN9LgdhSHxC6ajAO5AGyw3snbtWjRs2NDTy9A4wLZtQM2aMZg3LzEle+UKT/affsoqtWXL+LNFi8Qw1ZUrju0nOjon2rVjGKtJE8fXGRQEnDrFEuzs2Wk4Nm/mcyEhIahTpw4KJbkUNgzWuXPMse3bl2hkb9+mITJULgICmOMqWZLVeGvX8jU9enAo4vbtPHarKFqUnl6/fsnDrufP09h06mQ7HHjjBg3duHH2tz1mDKckP/QQb5Mm0RtesYKf2VNP0dscN44GbffuRIP19ttUnk8vVYc+fSrg+vWiuHjxjtv24e/P0TCLF9PYO0J4OACccceyzGO2OsOK2/1UJRgaGipBQUESGRmZjivSuEqrViLz5l0RPz8/OXDgprzwAiv+OnRgBZ0twsJYobdqlbl9zJu3QIoX3yNDhji/zthY7nPKFJHChUU+/1zk8cf5XIMGDSQkRSnXr7/y9TVq8L1JiYoSKVRI5JtvRGrWFClRgtsqVozVfEePilSpItKvn8idO86vOSnHjolMnCiyfLnI4cMiMTEin34qUqkSqzLj40WyZ+d+f/st+XsrVxbZtk3krbdEeve2v4/ffuMx3Lxp/zXx8SK7drE6s2hREaW4/a5dRbJlExkwQKR5c2uO2QwBAf/IyJE/p/oaK853p06JlCwpMn+++fd89ZUI4EApaArsrRsOVAlqg+Wm/Y4aNUpGjx6djqvROMPt2yJXrvD3uDgap82bRYKDN0quXJEyapTImTMso86Z03bJ9OrVfC5fPp7g06JVq3+kcOGDEh3t2tpz5uTNx4c/33xT5NdfD0uRIkUkOsnGf/2VJeT9+9sv+X7tNZH27UUeeUQkVy6R9etFFi8WeeABlnl/+ilP7lZx9qzIuHHcZ5kybBuoXp37q1xZZMkSrqNQoeRrPnaMj924wWM6ZKcSPDZWpGpVkWXLzK8pPl4kf34a7OzZabyeeootA1Yee2o89dRRKVLkc4lPZYdWne8OH+bFzvLl5l7/7rsiwPtO708bLIveb/V+L1++LAEBAXLy5Mn0XZDGIWJiRJo0Efn4Y97/+mueOAsWFOnXL1QqV34s2YmjaFF6UymZOpW9UG3b8r179tjf56JFIkFBN+Spp4a6vP5KlUTy5BHx8xOpX1+kY0eR7NlvS6FCZ2XMGPZahYTQ4Kxbl/q2zp1jX1PhwiLjx/OEP2ECT9xjx7q81DT591+RHTtEPvpIJCCAV/8+PvRy6talpzN9usjgwSI9eoi8845It272txcZydc4amjKluWFR/bsIp06iXTpwouBBx8UefVVkX373Gu81qyJFV/fHbIulS/MyvPdnj38m/05dadORESGDxcBXnB6X1YYLJ3DcgMzZsxA586dUapUKU8vRZMKY8Yw/1OyJHM2zz9PpYawMGDevDIArmH58uX/vd6e4sX+/czp/P03q95697a9v+3bORdqxIiNyJnzX5fXX7gwpViulgAAIABJREFUUKMG+5hCQoBp004iZ87OmDgxG7JloxJ9ly7MWR06xNyN2KkOK1KEpds3blCCqE0byh/9+CMLLK5fd3m5qZI7NwsrunVjFeCtWyzIGDyY4rd16rDSb+lSrmnsWBatPPcc81hbtiSq1wMsRX/5ZcdV3P/9lzm8mBhg4ULq8jVowN/v3KEieuXK1CI8cMDSjwAA8NhjWRAf/xBee+1tehRupnp15vOefprfd2p4Qw5LGyyLOXHiBGbPno3x48d7eimaVFi8mAUEp08Dr7zCkvROndiv4+tLkeQ5c+ZgxIgRuJpwJrSnKRgaSoOVLRtlhHbtuvc1Z8+yNHvePKBYMWvO/kFBQMeOTJ4XLiwYOHAQcuX6EhUrBiEwkCfdP/6gEOqePSzuKFOGRuC772ickvLhhyzTb9yYJ+X166nd1749S8LTg4IFaSBq1mR14OLFLHn/3/+4hrg44LXX+Hm/+y4HIO7dSwNWqhQLOJ54go3E8+bxIsFeY3JK4uNZPPPIIzRMSfuxHn6YWou8mGFFZcuWyUvorSBPHuChh7Li7NliCAkJsWajafDoo+wB7NSJfyf2oMEKT5c12cWsK2bFLbOHBKOioqRWrVrywQcfeGQ9GnMcO8b8RK5cDKV160YJoEqVRLZvT/7a4cOHS58+fUSEob8XX7x3e2FhDBONGCEyadK9z9+5I1K7tsjbb/O+LWkmZxg2TGTmTP4+b948efDBXlKmTLy88opI+fL3hi/j4xnSmjZN5IknGE589FEWP2zfzgS8LYmliAg+fvCgy0s2xYoVDAv6+ooUKJBYNLFkiUibNiyk2LHj3vfFx4ucPi3y00/Mt/TpwyISX19KO7Vpw+KKRYsYCktZD3X5MnOYhQol5sbWrrVfdBEXx5zliBEMF1epws/y8GHXjn/0aJGBA89IUFCQHD9+/J7n3XW+W75cpEgR+3nBIkVEgGJOb9/euqFzWOlDyv0OHz5cOnbsmGrCVGOOoUN5YjpwwPptx8by5Ld6NU+OX39N3bpcue7VW7t165aUKlVK1qxZIyEhzFPZY906kYcfTv5YfLxI9+4ivXol5j6sMlhvvcV809mzZyUwMFC6dr0kdeuyEnDFChrYlBWBSblzh7mL4cN5ovbxoebcvHksNEnKjBk0cunxp333LteSJ49I374inTtzv089JfL00yItWzq2vdhYkdBQke++42f21FMs7DByU506sehk+nQWcjRokPje1AxWUuLiWJU4fDhP7NWqcV9Hjji2VhFWmzZtKjJjxgypU6eO3E3xR+nO890XX7DoJOXFTnQ084lAFqe3rQ2WRe+3Yr8hISFSqlQpuXr1qkfWktmYPl0kSxYWFLz+Okuv3cmGDfQ2bLF27VopXry4/PLLealQwf427t7lei9cSHxs8mQKyyYtB7fKYM2eLdK/f6w0bdpURo9+Q7JlY8FA/vz06CZNSt1giVCct149lu0fOEBj1a0bPZzKlelR/vwzq/IqVhT5/nuXl50m586x6OHTT/m9P/wwKyD9/Chya6YS0wx371IoeOlSFpg89lhioUe1aizu6NdP5KGHRI4fNyd+LMLXbdlCwdzChfn+yZPNiwpfu0ZjHRUVLx06dJARI0Yke97d57uZM0XKlUv+d3zqFC8gXdm3NlgWvd/V/Ro9V9tTxpM0TrN8uUitWjxxtG/Pk+W5c+7b36RJIqNG2X9+2rRpUr58dcmRIz5VI9C1a2Jvy/ff85/87Nnkr7HKYC1fHifFiv0lHTt2lLCwWKlWTWTOnOQnmtTYvJnewOTJ956MY2MZJpw4kYY8Tx5+H+XK8STvTk9r1ix6pAbh4QwNFi6c2GvmDj78kIby6lX2Zi1cyO+zQAFWLebOzYuPfv1E3n+fhjw8PPXPIjaWn/NzzzHUWKMGQ8PHjqW+lurVqTx/8eIVKVmylHz77bf/PZce57s33+T/nnH9/ccfxkQAzxosJwRlNEnZv38/WrZsiSlTpjg5EE1jiwIFWDkWG8sE+AMP8L672LqVww/tMXLkSERERGD69Iv4++8cqFnzXnVbEVbbrVrFirdnn6UUTtGi1q83Li4O8+e/g1u32uOrr75CzpxZ8Pff5t4rwplb77wDfPnlvYMcAUo21a3L26uvskpw40ZO3m3blgUdTzzB4odmzRLH2FtBSAgLRQyKFWMhyIoV9sfaW8GqVUDFilSD8Pdn4Ufhwjz2X35hkcrBg6wK3b+fUlIHDlD1vnJloEqV5LfAQH6OjRrx9uGHFDn+5hsWdhQvzqrIjh2pRJItG//eY2JYtbplC/DDDwHo2XMzhg6ti7i4ODzlzqFcSXj1VR5v69bAunUsuPDoHCwDs5bNiltm9LAKFy4sX331lUf2n5nZt49FEEafyOXL7ttXfDyvolN6Qve+Ll5KljwmwcED5ZwNd+/UKeZA8uRhkn/JEtvbcdXDioqKkh49ekj9+n2kbFmTcaoEbt1iDqdmTRFn2wTj45mb+fBDFjLkzUvP45VXmMeJiXFuuyIs8MiXL3kINT6en2vx4olKGFZz9y5zmENTtMeZyWFFRIhs2sQesv/9jx6pnx89qscfZ15rzhx6TDdu8D0xMQxD/+9/PN4cOVhEs2QJj3HhQpHWrdmDtnmzyN9//y1FixaVTZs2pdv5Lj6e/W9Nm9IrfOEFz3tY2mC5uN8wW52kGpeJiWFRhAhzAWkN3nOFo0eZaDbDwIHx0r79WilUqJAsTyER8NVXzAXly5d6U6srBuvvv/+WatWqSefOneX8+UjJl8/8e48eZV7KSoklEeaZNm5kBV716jxZd+zIHNuJE45ta+5chuGScvo0Q3WrV/MEahRhWMnSpQzffvRR8sfNFl2kJD6e4cKff2b4sF8/GvXcuRlebNWK1YALFzL0OnYsi0By56ZxLluWFz65clGNRUTkzJkzEhsbm67nu9hYfh9lyxpKF9pgZWiDpXE/167xatVWKbMVLFyYuoFJynvvsYz5zz//lHLlykmvXr3+K7QZOpRx/nLlWPRQvbrYlF9yxmDFxMTIlClTJDAwUL744guJj4+X+HgWCJgpSFm5kidCqyWWbHHhAkvHn36a3nG5crzoWLWKHl5qtGx5b1n98uX0COPjE4swpkyxds1NmnC7hpTTxYv0dgyDdfq0eQmj1IiLYwHHypXMHfboQQmpnDnplefOTcNZtCjPzr6+bEM4dSpxG+l93rl7l/9/DRqIAMrp7VhhsHTjsMbr8fMDpk7l3CnXhs/ZZts2oF49c6811C7q16+PPXv2wM/PD9WqVcPy5cuxcqXgn3+ACxc42XfJEuYlXGXHjh1o2LAh1q1bh507d6Jfv35QSkGp5JOHbREXx8booUOpcj54sOPqD45SqBCVExYtouL6smXMQ02fzhxfkyb8PvfsSf59Xr/ORufWrRMfE6HC+uuvc93GOJKPP+agRis4epS5qezZ+XkCVGgfNizxs50wwZrmYB8fNm+3b8/xLF99xSkAQ4bwWLNnB4KD2fDs70+VkoMHmU975BHmHgGTY6wtwljTzZsA8AHE/QIc9jFr2ay4aQ9L4yxxcWzynTvX+m1Xry6ydau51x44QI8hKevWrZN69eqJj0+EPPbYdjl8+IqULi3yzz+2t2HGw4qKipJFixZJ3bp1pVSpUvLJJ59InI266urVWdFmi8uX2VfVuLH5ykF3c+sWPa3nn2dzc8GC9MS+/JLhuPbtk79+1SpWq6X0Cn//nR5jaKjraxo1iuHMihVZAWkwerRIu3YUBA4MFLl+3bHtRkenHXqNjKQH9/rr/B6THmdYWGI/XHS0yJo1bHAHLsujj7L8PDzcsTU5S/HizCsDO+WVV5zbhr3zJXRIMH3QBit92b2bJzhDXd0Kbt1insBsn1dkJBPktgoLduzYIX369BE/Pz+pVGmddO/+j5w8efKeRnJ7BuvSpUuyZs0aGTdunBQqVEiaNWsm33//vcSmUkf/xBM8kaVk926R0qV5MnalCMLdnDjBXFfHjiJZszK/Ywj3Rkay6OCbb2y/95NPmJNLK8yYGpGRLBo5coSFNxERiUUdFy8yj1SgAJuAHWXVKjZkDx6cuiCyowDZZPVqNlX7+7N/7MMP0y4acpaYGIaeo6NFgECpUIGhcUfRBsui92e0/d7PDB3KE4BVbNrEvJMjBAenfmV/8eJFefbZZeLvf0iKFi0qgYGB0rJlSxk/fry8//778vTTT0u9evVk+vTpMnHiROnatauUKlVK8uXLJ02aNJGxY8fKAZMSH716iSxYIHLpUuJjCxbQI3BktIanuXWLhuOnn6iKXrcu8ze5c9OTOHLkXi/LqGLr0sX5vNySJdzvmjVsVN+xg9+vQdeuNKSOeldRUfR+1q6lYQkIYI4qZVGHMyQ970RFifz4I2Wo/P1FGjbk9IHz513fj8GZM+zXM/Z95gyPZc4c59ed4nHTBkvx9elD7dq1ZefOnfc8rlwMqgcHByMsLMylbTiDUgrp+flpgGvX2Cvz44/Jx6Y7y9tvM08xfbr59zRrBowaBbRqZf810dEUcj16FIiNPYedO3diz549uHHjBvbu3YuzZ8+iVatWyJUrFypVqoQ6deqgXLly8HFwvO3IkRRkzZ8f+Owz4IUXgA0b2LNUubJDm/Io33wDzJ/PPi+D+vWBWrUogrt2LfOBRu9X06Y85rt32ePUoUPqk4ft0agRBYsvXGAus2xZ9s89+yyfv3CBPVitWwOXL/N26VLi7/buR0WxDyswkLmoCxc4IXr8eObjXMHeeefuXa71m2/4//HQQ+zz6tyZeUVn2bYNGDGCebVSpUrh1KlTAMoC2AxgFIBvTG/L1rqVUrtExNR/s9c0DusTv8YM/v5U737+eeDPP10fX75tGwsEHMEovEjNYGXPTsP2009Av35F0b59e7Rv3x4AsGDBAmzevBkzmUF3iQIFqB6+eDFPvoULA3/9xZN5RiIkhCdWg19/5Yl/5kwga1YWJBw8SMP12WdA3748IbdowYKIwYM5aqVly9T3I8IRIoZxCQ7miI1Ro9jke/IkT/YLFya+5to1IG9eFmQEBSUaosDAxLEsxn3j+Xz5WCSydCm3/cQTHN9RsKD7PsMcOYB27XiLiko0XuPHs2ijWzcqsju6hqRNw0kdg337gObNl2HevGVo0ybt7bjqmADIHCFBT5FR153RiYtjGO/zz13bjtGQevq0Y++bNo1NnmmxYAF7hlJilTSTCKcIBwQwZDNlyr3ivRmBO3eofxgRkfhYs2apf7937jDcNnIk81h58zK3OGVKYqHCzZsMlTVrRj2/YsX4mly5GParVYtFKb168T7A5ufly9mse+AA81jO5gBv3WKZ/u+/O/d+ezh63rlzh8K/PXrwc27alHnDpJ93akyfzuZnW2zbxv+hzZvT3o69dcPKHBaAnAD+AvA3gAMA3kx4vDSA7QBCASwDkD2tbWmDpbGKXbtcL8A4downMUf54QdziuERETxBpCzosMpgxcaySdfHhyflSpXuPfFnBL7/npWMBlu30oA4YnzPnBHp3ZtN2wEB/CyGD2c+bNUqFqGcPp3YhJuSjRtFBg506TDSDVfOO3fuUMm/e3f+rTRrxlxU0hxoSkaOZNOwPTZupNFKq0/SCoNlJqByF8DjIvIQgOoAWiql6gF4B8AMESkH4BqAAa77exqNOWrW5DTdV15xfhvbtjFP4ij2Jg+nJCiIE4x//dXxfZghPJx9TH5+QNeuDAtGRCT2EmUUUoYD33orcRq0WYoX55Tkzp3Z5zV/PgdQrlkD9OjB7X3zDacW28o+NGkCzJnj+rHYYuVKhjK9AV9fahd+/TVw7hxDqevXM3fXogXDy1euJH9PWjqCTZoAn39OjcmDB927/jQNVoIRNOZ5Z0u4CYDHARjzwxcCeNItK9R4nGvXGIP/1/Wp7pYyaRKLC2xN+DXD1q3mG4aTUqYMcOYMRUrTol07iqq6g+BgNt/mywcMGsQcjiMneW8gOpo5o44deX/3bk4QTk2I2B4TJ/JzOHMG2LSJhipPHhY7DBnCi4x27YASJYD+/ZlfSnlydgf+/pyYHBXl/n05Qq5cNPDLltF4Pfssi17KlGEucP584OpVGqwSJVLfVvv2wLRpNHonTvCxAwco5mslplLWSqksSqm9ACIArANwHMB1ETGWEw477ddKqUFKqZ1KqZ2XUmvJ13gt4eFUbK5Rg0lpb8HfH5g82XkFjK1bnfOwsmencoOZz6JdO56Q3VVTVLAgvaqMyoYNHHNfLOHsMWkSMHo0kDOn+W3s3s0CnFq1gH/+4UXMRx/x7xUAPvmEBnH2bJ5MN22ih75kCVXSDUX63383dxHiKA0bskBk1izrt20VuXPTS//2Wxqv/v1ZMFS6ND/fbdt44ZoavXqxwKN5c25j/Hjgu+8sXqjZ2CFDjfADsAlAAwDHkjxeAsC+tN6vc1gZk507meupWZOaYuvXe3pFicTFUQPO0QKM27eZfE85Jt0sTzzB/pe0iI9nPmbfvsTHzOSwhg2j6oM9FYuk2/f1Ffn337TX4o0MGEBxWBF+RoUK2c8z2WPNGpEHHqCAcaNG/E5/+405zt9+4zbtFT4kFe6tUYN5nSefpOaio8K9qXHwIHvjrGh6T8/zzvXr7E8zRJ3btKH25rVr9t/z9tsshHnnHRa9GNhbN9ylJSgi18Hi+3oA/JRSRll8cQDnXLaeGq8kMpIhgVOngBkzWAZudvaSu/Hx4ZXrhAkMX5hl507OLLpyxTkPxWweSynG9leupBdo3ERUsvspb1OnsteoXTuGW2y0L/63/bT0BL2V2Fh+Lp068f7kycCLLzJU5QgtWwJHjrAHbfduhkp//pn3hwzhHKqePW17CDlyJGob7t7N7XTuTE3DevXYozVsGMO6roTEK1bkcb79tvPb8AS3b7NM//vvGWnp1YteU3Aw/zYXLeLcLIOXX+Zn36wZc6qrV1PP0jLSsmgAggD4JfzuC+A3AG0BfAuge8LjswE8l9a2tIeVMVm7ltVEY8aw8urmzbRHr6c3gwdzqqtZpk7lyBI/P456cJSZM83v7+mnWY+rlHGLFyAuyX37NwYTebM30Lp2bfvPeTMbNtBrFxE5fJiVZq7Murpzh97m3r30UP39KU/VuDG1Czt1ckwRIy6OkkpTp1LNPU8ebuvtt1l1aEPaMVXOnWMFo7NzyAzS87yzfTv/vlJy44bI4sWMAuTLx5+LF1OFPjCQUk7lylElZOPG1NcNiz2sIgA2KaX+AbADwDoR+RHAGAAjlVLHABQAMM8yK6rxKooUYVPqsGG8ooqJYZOlNzF5MrB8Oa+SzfDnn6zei4x0zDMzMOthAaygypcPuHiR3tP8+QvRt2//VD2sf/9lErtwYeZf9uxhrsUWGTWPFRLCSk+AnsewYWzQdRZfX6qbR0bSqwoLY4P51q3c144dVHk3i48Pm4rHjOG05fPn2QR87hzQvTv/LwxV+osX095ekSJcjyuVremNvQrBfPnoba1cCZw+zfzXsmVA797Aww+zcCN3blawfv+9hQsya9msuGkPK+PTt6/1s4isYu5cNhSndeUbG8v5Q40aMc+RP7/jV8tHj1JPzSydOrGRWMRcDmv4cArCmhFN7dtXZP5882vxBuLi2Ox85AjnQwUEpJ4XMcvAgffq9Z0+ze1XqUKvdeDAxOZiVzh5MlG418+Pyvkvv0zP0Z6Y8s2bIoULp52bTI30OO/s2iWyZYvIBx/QO717N+2+uKtX2fP2zDP83wCY8zKwt27oeVgad/HSS6zAunvX0yu5l/796Z0sXJj662bN4us6d2YZrr+/eW/JoFQpXmmb/RwcLW//4ANWu1WvnvZrM6KHtXUrZaXKlwfeeYe5Jj8/17dbu/a9+b4SJegJRETQQwoJAapVo1TR7787X8FZqhTL1VesYA7x44+ZExs3jnnFtm35v3LkSOI+8ualluDo0e6rHLWCc+eAsWPZIlCsGPNvS5em/p733gPefZe/DxzInq6pU61dl9doCWoyBlWqsER3yRIaCG/CKMBo2xZ48kkaIlv4+1PMdMsWGpK4OA5cfPBB8/vKlg0oWZKl7RUqpP361q1ZBBAdbX4fZilYkOGqjITRLHzmDEupjx61Zrt16tDYp+Sxx2goPvmExSx58rC0fcAAFnkMH84wn6+vc/vNmhV49FHeJk5kMc+GDWwYfucdPt+iBW9dulAjce3atLUPPUWLFvxs/P1ZYHH6ND+f1Jgyxf3r0h6WxmFeegl4/333TP91ldq1aaxefdX+a3bsYP/Vxo08ec2dSyPnKA88YN4zK1iQlWLuUL3IaFWCIsx3dO7MK/IBA1iJZgVVqjB3Zauib8gQ5leio/k9FCnCKcJTpzL/GRzM3qEzZ1xfR4EC9ODmzeP2Vq/mBdFnn7G3CQD69WMu1dIqOovIlo2N17t20bOaN887mtK1wdI4zOOPs7HTqhHlVjN5Mq/a9+61/fy2bTyhFCrEcEeuXM4VkThSeAG4T/Uio4UEt2zhuI3AQHrqo0ZZt+1s2aiebqv4Ril64OfP07MZMoTGpEULGpQ//gDu3GEYtmtX4LffrAnbKcVRLyNH0quKiKAXmCUL91OwIPDUU1SWCA93fX9W0bcvv6eOHem5egPaYGkcRqlEL8sbKVCAigm2FDAiIykZc+ECe0VcwVGD1bYtDZbVuYuMZrB++IHh22nTWGVnKFVYha08lkHOnMw5ff89+9t69kyUDypXjqG6sDCgcWPmYWrUoCGJjLRufb6+NJIhIfwctm+nAf3lFxrLpMbNyv06SvXqDF9Om+a5NaREGyyNU3TtChw/bv/E4GkGDOCJ6MsveT8yErh5kyEOQ5A2vQ1W1ao0oOfOWVBdkIS0QoJXr/Jk+Omn9GaME5EnEGEBhFIMM0VH09PJl8+6fdSpw7CvPYoVY5jrhx/o5bzxRvLn8+blxc7BgwxZrljBcOG4cczlGOzYwZYFZ6lXj7dvv6V24tKlLI//4gsgIIAXXQULUsdz2jRg//70LdRQimvzptlq2mBpnCJbNhYReKuXZRRgjBsHXL/Oq9kRIxgOrFOH4Z+KFV3bh6MGSymGBffuTUNJ1EGCguhh2TuZzZrFxP/vv1PXcP9+4JFHLF2CafbtYx9fTAy9nVOn6GFVqWLdPlLzsAwaNKChunSJhnPjxntf4+NDY/Hjj/QAo6LocXXpwgueYsVYYLF8+b3vNcuUKTRGxgVHlizst3vlFYYkw8PvFe4F5qWbcK/XYbb+3Yqb7sPKXNy8aU3nvjsZNIiqB4cPi5QsyZ6ZESNEsmd3XRMxJoYDAR3RI6Tu3QXLBjga5M1L3TdbxMeLfPUVlSQ6dRKpU8cxxQcree01fv5Kibz4ouP9b2aIjaUqxdWrqb8uPp4DMBs0oFammTliN2+KzJolUqGCSLVqnLcVGCjy11/OrfXGDa41KEikWzeRceP4Gd26ZXu9R4+KAEOlbVt+53XqcOjkli0i0dHOrSG9sHe+hJUDHK28aYOV+Xj5ZZ6AvJXLl9kcvGcPGzaDgtiw+thj1my/fHmR/fvNvz4yUqRIkWvSp09faxaQQJkyIqGh9z5+6ZJI164iFStSCLZkSf70FJUrU4g2LWPiKg0aiKxbl/brIiNF6tZlE3mbNuYNeWSkyNKllGry9RXJnVvkn3+cW+vBgxRifvhhShplyULpJ3sY5527d0U2bRIZO9a9wr1WYYXB0iFBjUsMH848UVqjBzxFgQIcCPj88wwFXr3KSrC33rJm+46GBXPmBCZP/h5KWbN/A1uFFz/+yAbZEiWYuztzhp/BY49Zu++0CA1lGO3IEX7+9evb75GzirTyWAY5czJcfOQIcOwYJZ0APpZaU3i9epSSCg/n8MMCBdgMbZboaIrEDhjA8GSBAsxf5cvH7RijUVIje3YWh7z9dnLh3j//5Gdcvjz/7l0V7vUmtMHSuESxYqy2mj3b0yuxz4ABPEHExLBCKy7OuhyOowYLgOXGCkhusG7e5DC+YcM4WXbaNB53t27AV19Zv++0yJsX2LyZRsCYdrtihXv3aSaPZVC8OKcRX77MnNSePVRt+Osv++/Zu5efd2go83KnTnF4ZGrcvcvy+WeeYQ/YW28xd7d7N3PBp0/zp7Ml5IUKseryyy+pVPHNN7xYmTGD+0uqSu+NPZRm0AZL4zKjRnmvXBPARPasWTwRTZvGK1qrmiCdMVjuwKgU3LyZSiQAR8A0apT4mixZPNP8WagQLxaWLaMg6pgx9PzciVkPy6BBA64rVy4a9vLl2f7gKlFR9HD69KHRmDqV3tPff7Pw58UXqZiycSNH5Myfb00loC3h3pdeoiHr0cNx4V5vQUszaVymalWegLxRrsmgTh16gh9/zIZIqyhXzrUqMavw9wcWLKBU1Jw5zil3uAulqLt39Ci9mI0bqRLiTsqWBW7d4sm4UKG0Xx8by4uarFnZAnHokPPl3JGR7KFavpweVbVqbAOZOhUoWtT2e2bPpue/YgUNXPv2zu3bHnnyAG3a8Aaw1+yXX9iPNnw4y/YN6ahHH6UmYlJiYzmpuXlza9flKNrD0ljC6NHeK9dkMGUKe2uCg63bpjd4WDt3MgwUEcER8d5krAyyZePPdesc02x0FqUcCwtmzUqP6tlnaeT27rVd6m6PO3dobAzv5cMPGXY+dIgl8M8/b99YGWTJwr6vMWMSm5ndRalSDGGGhNAznzUruXBvmzY8BkO4NzaW3uCoUZ79H9cGS2MJjz/OP/iff/b0Suxz+zZDPjNnWteAWaIEvYY7d6zZniPExFDQtXVrFjXUqWOdJp/VvPEG/zYqVUq/fTpisACGKydMoNHPnj3tPqfbt9lY+9RTNEaffMIiiCNHaOyee47zzByhVStua/58x97nCoZw78SJVN0IC2MU4u+/qbVZujR7GF9+mQUdTz/tHhGm01VdAAAePUlEQVRnM2iDpbEEQ67pvfc8vRL7bNjAK8cGDawTHM2Shf/Qx49bsz1HaNGChQF791Lw15vlmdq2TZ5PSw8czWMZVKxI4ypy7/f677/MxXXpQsPy+edUTAkNBdav57gRMyFIeyhFL+uNNzxX2RcQcK9wb4UKLNjZt49KJZUqeUY2ShssjWV06+bdck3r1zMG//bbvKq0Ck+FBWfPBn76iSfOjKYnmB4YHpYz3nSDBsBrr7Gq8cIFVjZ26sSq2AUL6NWeOMFc1cCBDKNZRa1arOjzBg0/pRhFOHCAhRvx8fQa/fy0wdJkcAy5Jm/4R0tJfDw9LFf1A23hyJgRKylfPrFEPqONGEkPSpSgsXJGAf3GDfZE3bjBKr4lS1gIERbGKQX9+7N3yl1MmsQc0oUL7tuHWbJlo3c8bx776IyL0oCA9F+LNlgaS3n2WVYfhYV5eiXJ2b+fVV8lS1q/bW8ovAgMZC4tPt4z+TRvxNHCi+vXWbxiaPZ9+y29rCpVgIYNOb/KbMPz11+zD85ZSpfm/t580/ltWIWvL9C7Nz/LnDk9uxavMVhKqQx3C7ay3CyTkC8fG3VnzvT0SpKzfr17vCvA8wbruefoXeXNyzBVqVLeXa2ZnqSVx7p6lerobdrwYmbFCk7WPXOGau4DBvDnzJm8EDNL27YMFy5b5vzaJ0xgafzhw8kfDw4O9vi5z5mbFXiNwTKrJeVNtzBvcyO8hBEjvE+uKTMbrAIFOD8pKIjVZc2bs3FUY9vDunKF4a1WrejJ/PgjK9/OnmVfUq9eyXuwihfn6I/evc0X1+TNm+hlnTzp3NoDAljiPm5c8sfDwsI8fu5z5mYF+s9aYznFijGs4i1yTdHRHK3RpIl7tl+8OMNJnqrqGj+eXkS2bDxJpiURdD9Rpw4NVkQEMHcux4WUKcMqwGeeoZEKCWH/VN689rfTsCHw6qsswrh929y+a9WisenRgy0IzvD885RS+u03596f2dAGS+MWvEmuads2luW6S3DVx4cnwWPH3LP9tPD1pYJHaCg/74YNPbMOb+PiReC775jTK1uWRTeDBlGe6NtvWdWaJ4/57Q0dSiPUv7/5ysMXXqAH/Oqrzh0DxZLZmG9rn5GR1Ay8X0jTYCmlSiilNimlDimlDiilRiQ8HqCUWqeUCk346Wb9ZU1Golo13jwhtpoSd4YDDcqV85zBAlhmXb48PVt3iOtmFC5cYANvkyZU1NiyhdqKs2YxrNelCxuEnUEpTm0+edJ8v6FSzJEtWkSVD2fo2ZMXIiEhyR+PjwdatmQ406pGeG/HjIcVC2CUiFQEUA/AUKVUJQBjAWwQkXIANiTc12j+46WXKNfk6X+m9DJYnq4U/Ocf4LPPPLsGT3DuHL35Ro3Y9Lt1Kz2bCxd4wdShAz8bKzDGkThShFGwIHO6/fo51yvn40MDOW5cosKECPOWx49TlcOZ0v2MSJoGS0TOi8juhN9vATgEoBiADgAWJrxsIYAn3bVITcakaVP+M61Z47k13LjB7nx3j4T3BoN1P3lW4eHABx9wtleVKsxTjR5NI7VoEY2UUYLtqERTWpQokViEceKEufc0bUq5o759navgbNaMYc05c3j/3Xcp/5Q7NyMZu3c7vs2MiEM5LKVUKQA1AGwHUEhEzgM0agAKWr04TcbGkGt6/33PreHXXznMzt39I95gsDI7p08D06fz4uOhh6h1N348FRgWLmQpeUqVcYAGa/du6+S4gMQijCefNF+E8eabLM6ZMcO5fb77LhuKw8OZgzMaeRs31gbrHpRSeQCEAHhBRG468L5BSqmdSqmdl3Qr/n1Ht27M7eza5Zn9b9rk/nAgoA2Wuzh5khc8Dz8M1KxJtf3XX6eRmj+fuTtbRiopAQEs+T961Nq1OVqEYVRxvvOOcx5ftWosxf/0U75/7162MDRq5B2KGOmBKYOllMoGGqslImLMCr2olCqS8HwRADajsyIyR0Rqi0jtICsFtzQZgmzZ2JflKS+rb19qvbmbokU5f+mm6Us5jT2OH+dJvU4dGqrQUHoW589TbLZFC8cHUTorhJsaRhHGiRPMMa1fTyOSGqVKsQCke3fn/lYmTmS7SHg4G5ONGVbe0kLibsxUCSoA8wAcEpHpSZ76AYAxCq8vgJXWL0+TGRg40HNyTdWru6+cPSlKUVPQk5WCGZnQUKBuXRYoPPII/1amTmVBxWef0ZMwZmo5g9V5LIOcOWlcX3+da5w7N+33dO3KcTzPPed4QVKJEizNf/VVluk/8QQfv1/yl2Y8rEcB9AbwuFJqb8KtNYCpAJorpUIBNE+4r9HcgyHX9MEHnl6Je9FhQcc4coSeU/XqzAkdOMCczKpV9FyaNrVOVd8dHtaFC0CfPvSWSpSg0ahXL+33ffstFc+NwZuOMnYsR3wUKsRhkfcTZqoEfxcRJSLVRKR6wu0nEbkiIk1FpFzCz6vpsWBNxmT4cCbGvUmuyWq0wUqbgwcZ1qpalV5GRARVyf/4g2G+MmUojXTrlrX7rVmTpe3OKk7YIjSUvV6TJnEumq8vR9ekVYRRvz5w6hSP/bnn0g4jpiR/fhpgTw1R9CRa6UKTLhQvziquzNwn5KkxI96MCJXyX38dqFyZIayrV5lzOXOGxqphQ871atGC6hSNGwNDhljbv5c3LxAcTC/OKho0YFHRhAlsVs6Rg2HNtIowihfnxduff7JvrE4d5nijoszv+9o1vn7DBtePIyOhDZYm3XjpJZ6gvEGuyR1oD4uIsOT81Vd5Qm7ThjqLn3/O0vSZMzmSPalA748/8uSfKxf7qXx8gNhYa9dldR7r7l2GA994g/JLjzxCQ3zihLkiowoVGKZs2JAh0Ace4M+0PKcrV6jg/t57HFt/Pynza4OlSTeqVWMoyBvkmtxB1aocHX4/IgLs2cO+qAcfZH9SVBRzNGFhHOpZv759FfkXX6Rhq1KFVYJffulakYUtrM5jjRvHkSTPPce/7VWrWISxYgV7rcxIMSnFnFZsLPU3V62ixNb8+YkG+8kn6Y0ZrF9PI9ezJ0ORS5dad0zejjZYmnTFW+Sa3IG/P72I+424OJ6wu3Th1f5XXyWWeteta66CrUULhtSqVGEI0R1Y6WH99BNnVc2bl3h8xs8SJdhv9fTT5pQwAgKAxYtZbfj55/z8liyhd7p4MSWdevZMzP8a5exK8TOeMIHeXs+emb8fSxssTbrSrBmvnH/+2dMr0VhFliw8iR47xlL02rWdL7N2p8GqXh04dMixXJEtzp1j1euSJfbHxDdqBLzyivlxJA0a0FN7+mn2nm3YQBmm2bPptVasyGne8fH8rFu2TNxP1apU6z90iGvLzGiDpUlXDLkmM/0qmoxD0aLW9AK502D5+jLc5qoQ7sCBwODBNDKp8fzzQI0aNG5mIgoTJtAgTZ2auN6ePXmRd/Agh0s+8ww90QceoHpMrVpsjp86lReCkZGuHZu3ow2WJt3p1Yvd/hpNSipVoqdgpe5fUqzIYw0bRu8pLQwljGPHzBVhZMnCEOBHHzFnFR5O4xoVxZ60Ro342RjhwJo1qUo/ZAgnJ1+4wNlfmRmL2vI0GvModf81PGrMkTcvG2JPnGDVpdXUrs2Bnq5ghOPM4OvLIZJ16zIk2bx56q8vXpyhwJ49WcTSpUvy55s3p8EC+H/UuzcNWc+ebBM4fdqxY8loaA9Lo9F4Fe4MC9ap4x6JptQwxpGYLcJo3563gQOThxJjYmhsH388+etLluSgyuHDaRQzM9pgaTQar8KdBssomzc7EsQqGjVijippEUZqea1332Uo0Zh/BVCmauNGSp2lxMeH0me1alm7bm9DGyyNRuNVuNNgZc/O7e/Z457tp8awYfSAjCKM6tXtS5XlzEmvbMKExM9CKXqI9zPaYGk0Gq/CnQYLcI8QrhmUYpn6sWNspPb3B/76y/7rK1Sgp9W9e+av/jOLNlgajcarePBB5nrcJeFlNBDHxKTvpN74eIb4Pv6YBqtgwdQNFsAy9qpVgZEj02eN3o42WBqNxqvImZODDq2eEBwTQ5HaWrXoYa1eTb3D9OTiRUpQVa1KtYxNm1J/veGV/fILEBKSPmv0ZrTB0mg0Xoc7woJZslCjcNUqTi/+8Ucqw7tKp05cb+vWwP/+x+q+jRvvfZ2PDzBlCr3Hpk25nt9/T3v7+fNT6mnIEI4luZ/RBkuj0Xgd7jBYPj7U/5s1i6NG1q5Nuy/KDAsXciZW7tw0LJ9/ThUKe+TPD4wZQ29r4UJz+6hblwoxvXpZr2KfkdAGS6PReB1Vqlg7u8qgeHGKyx4/zgq9atWc39bFixyV0qQJMHQodQXz5OHMt9Gj035/zpxAjx7m9/fSSzSKb77p/JozOtpgaTQar8NZD+vWrbSLNRo3ZjFDlSr2x53Y484delGtW7M4ZPduThnesQPYvJlGZdAgx9dtBh8femTz5qWd+8qsaIOl0Wi8jrJlqTzuaIPvggWcbPzLL6m/7pNPzEs0xcVRPf2ZZ4BixejhdO4MnD3LnFjz5sAff1BN3d3VfIUL8xh79wYuX3bvvrwRbbA0Go3XkTUrPZhDhxx737BhnGo9eDD7l1wZt7F/P3NNwcH0nKpWpWp6gwbAb78xPGfQtau5MKAVPPEEtQOfeSZzzpVLDW2wNBqNV1KlCrBvn+Pva92axqZsWeChh9j3ZFb9/fx5YPp0jgVp1Ypl5T//TGWMkSMp2jxzJr2zxYsdX5tVTJrEHNqHH3puDZ5AGyyNRvMf7mrWdQZXCi9y5QImT6Yo7PLlHIpoT/T29m0an5YtOd5k/3429oaFcc5UlSrJX587N2WTXnwRCA11bn2ukj07c2mTJnlGZspTaIOl0Wj+o1Ej4O+/Pb0KYkVpe8WKLFAYPhxo25Yhwxs36HGtWwf06cPKwa+/5ij6s2eB+fOpiJ4li/3tVq8OvPYaq/yio7m9S5dcW6ujlC1Lwdvu3YF//03ffXsKbbA0Gs1/NGtmvjfI3VjVi6UUDdPBg8xpFS8OBAUB48ZR9eLwYapedO9Oz8wszz/PIozx44G9e4EOHVxfq6P07Ak88ggN8f1AmgZLKTVfKRWhlNqf5LEApdQ6pVRowk9/9y5To9GkB71709vwhubUkiWBmzftK5qb5exZ4L33WM6+cyeVKYKC2DfVujUHRjqDUvTGli1jX9e+fZ4pgvjoI2DrVvaXZXbMeFgLAKScsTkWwAYRKQdgQ8J9jUaTwXnwQRqK9es9vRIahMqVnctj3bpFT7F5c1b3HT3KE/vJk3x8/35O7q1fH5g40bnc3apVwHPPAW+9BYwYwabh06c53v7zzx3fnrPkycOc2ogRNJyZmTQNlohsAXA1xcMdABiBg4UAnrR4XRqNxkP06cP+Im/AkbBgbCwr+nr25JTfkBA28Z47B8ydy/yc0SicLRswahQbf/fsoeLFhg2Ora15c0omjRlDj+3WLeCff4CrV9NfqLZ6dQr5du/OnFpmxdkcViEROQ8ACT8L2nuhUmqQUmqnUmrnpfTOSmo0God56ikqid+86emVpG2wRGh0XnyRualRo4CVK+k5Pf44Pcbs2e2/v2RJ4LvvgPff52DFXr2ACxfMrS1nTu7v2DH2YUVFcVtly/Kx9GbYMJbdT5iQ/vtOL9xedCEic0SktojUDgoKcvfuNBqNiwQGMt/jDeMs7BmsM2cSS867dAHy5mUJ+4EDVEPv149Nx507M0fVrRvw6afAkSO280zt2vG9JUowhPjpp+Z7t/LmpXdz4QJ7uEqXZmgwvfOARk5t6VJ6mpkRZw3WRaVUEQBI+Blh3ZI0Go2n6d0bWLTI06tINFgi9Pjmz6fYbPXq7JP67DPmbSZOBMqX53sKFaKX+Nln7JPavZsl7du3M4xXvDjw9NPcVlhY4r5y56YR3LyZBQz16zs24DEwEPDzo+dVuDCNVnoTGMjvrX9/855iRsJZg/UDgL4Jv/cFsNKa5Wg0Gm+gbVv2Y3nipJsUf38OXnzySYbvVq1i6OvcOQ42fOwxehapUaIE83ILFnCe1JYtzGetW8eG4jJlGA5csoTbrVwZ+PVXzp9q1Qp44QXHw6Nly3quAKJxY+oa9u7NKceZCTNl7V8D2ArgQaVUuFJqAICpAJorpUIBNE+4r9FoMgk5cjAvs2RJ+u9bhOrnw4fT2ACcQHz8OHNEnTpxfc6gFI3JwIEs379wgYMca9RgCLRqVaBCBfZYGWHGW7eogPHtt+bL1h94wDN5LIPXXgMiI1nOn5kwUyXYQ0SKiEg2ESkuIvNE5IqINBWRcgk/U1YRajSaDE6fPgwvpWdv0bVr9HB69AAKFGCJeO/ezAsVKGD9/pSiMXr+eWDFCiAiguHAsmWBL75gFeDOnWzOfeklCs/a8pwWLwauX0+870kPC6B48JIllJjavt1z67AarXSh0WhsUr8+S6RTm55rNfnz09MJDQVef50nfndMH7ZHlixAzZqs/lu9miM8PvuMObOyZelxVagANGxIz8wYf7J/P8OTxgh7T3tYAFXmZ8+m8b9xw7NrsQptsDQajU2UYnFCehZf+PhQ/y9pXio9DVZKsmUD6tWj/NLGjcxlLVpEpfRu3Vjk0LAhQ5SNG9MT27nTOwwWwPBpixYct5IZRpFog6XRaOxiSDXFxHhuDYbahTcUEOTIwebcI0f4uQQGss/r6lUOcYyISFSGP3HCO4zE9Ok0+F984emVuI42WBqNxi5lywLlygFr13puDf7+DBV6umIxJR06sNfr5k1OMD5yhGHBrl0ZQsyXj/O1PI2vL3uzxoxxfCCmt6ENlkajSRVvkGryZFgwNfLk4RDFFStYaRgVlagC7ynFC1tUrsz5YN27c40ZFW2wNC4zfDgwZw7DIprMR7du9LCuX+do+MuX038N3mqwAOa4OnTgZzNgAJuTR41i0cPx4/S8kjYoe4qBAylVNXq0p1fiPNpgaVymXTuqe5cuzXENH3xgXtZG493ExTG01bw5+5BefZUCr+mNNxssAx8fNuy++y6HRv70EysNR44Etm3z9OpYyDJnDqsbV2ZQqQdtsDSmiY+nEsDWrYyJv/MOxyvMnMnheHFxvBIfOTLjx8o1ZM0alnm3a8fquDNnEpt505OMYLAM2rRhQ3L79sAvv/BWuTKfi4+ncrynijH8/NhnNmgQEB7umTW4QlZPL0DjPURH84R06pTtW3g4E+DBwYm3SpWAli3ZjzJpEmVuZs/mJFZNxqdNG/ZhTZ7MUODt29TiS28qVmRoLTaWTbHeTFAQe7cGD2axSIkS1D986SWqyn/8MVU0unf3zPrq1+fsrF69WKqfJYtn1uEMXv7Va6zk1i0antOnbRuky5c5niCpQXr0Uc4XCg7mP56v773bXb2aemvTpvGfIC1tN43niI+nmsTVq+wVSuu7UooNvIYiedastv8G3E3u3LwIOnaMjbveTrt2nES8ZAnL3+vWpQbiokXA0KGMQrRsSY/HE4wZwzD+pEn8fvv2pRiwtxsvbbAyCSI0OPa8o1OnWB2U1BgFB1PktGRJ/l60qHNXr489xpCgO6RzMjs3b1IhvFs3lkI7igi9noiI1G+XLvHn5cusbCtcmBcaZcqY28/IkSy68GS1oBEWzAgGCwBmzWL4vHVr5gHnzmVua+xYXgC8+KLneqOyZKGcVM2a9P42bWJhSNmynlmPWbTByiDExjJ/lNIIGd7S6dMcaxAcnGiAgoPZhW/8HhjoHu8nf37rt5nZEeEV+KhRvNJOajiioxMNjC2jk/IGcKRGwYIMRxUsyFvJkkDt2on3CxZMbHR1hokTefMUhsHq0sVza3CE/PkT9QSvXqUSRng4/wevXqV6/IABvOBLb+7cYSHIZ59RzeTBB9mcrQ2WxiHu3mVS9MSJ5Ibp/HmebJJ6RzVqcOyCYaTy5vX06jVmCA/3w/ffT8HPPzOfcO0ac0WGAfr33+SGx7gFBbGJ1/jdMFK5c3v6iNKHKlWA5cs9vQrnCAgAjh5N9IgvXmRUonZtz6wnOpoe4OnTLAgJDeXFQPv2nlmPWbTB8jJu3gT++oshmyZNEo1TiRLOXxlrvIuLF/MhKiofsmZlKXTr1omGqGBB5jV8dP3uPVSpArzxhqdX4RpKMSSbJ49nvRk/P2DDBoYCx4/nBfLKlfzdm9EGy8sICuJ4bk3mpVat0+je/UsMHrwAc+eyemzcOODllz29Mu+mfHngyhV6KbqwxxqaNOEIly++APbt8/Rq0kYbLI3GAyjFcGD9+sCMGZln/IM7yZ4dOHlSGyurUQro39/TqzCHNlgajYfJn18XrpglTx5Pr0DjSXSkXKPRaDQZAm2wNBqNRpMh0AZLo9FoNBkCbbA0Go1GkyHQBkuj0Wg0GQJtsDQajUaTIXDJYCmlWiqljiiljimlxlq1KI1Go9FoUuK0wVJKZQEwC0ArAJUA9FBKVbJqYRqNRqPRJMUVD6sugGMickJEogEsBdDBmmVpNBqNRpMcV5QuigE4k+R+OICHU75IKTUIwCAAKFmypM0NBQcHQ2m9Fc19xsKFCz29BI0m3QgODnZ5G64YLFsWRu55QGQOgDkAULt27XueB4CwsDAXlqHRaDSa+wFXQoLhAEokuV8cwDnXlqPRaDQajW1cMVg7AJRTSpVWSmUH0B3AD9YsS6PRaDSa5DgdEhSRWKXU8wDWAsgCYL6IHLBsZRqNRqPRJMGl8SIi8hOAnyxai0aj0Wg0dtFKFxqNRqPJECgRm4V77tmZUpcAnLLxVCCAy+m2EO9CH/v9iT72+xN97PcSLCJBZjaQrgbL7iKU2ikitT29Dk+gj10f+/2GPnZ97M6iQ4IajUajyRBog6XRaDSaDIG3GKw5nl6AB9HHfn+ij/3+RB+7C3hFDkuj0Wg0mrTwFg9Lo9FoNJpU0QZLo9FoNBkCjxus+2lqsVKqhFJqk1LqkFLqgFJqRMLjAUqpdUqp0ISf/p5eqztQSmVRSu1RSv2YcL+0Ump7wnEvS9CkzJQopfyUUsuVUocTvv/699H3/mLC3/t+pdTXSqmcmfW7V0rNV0pFKKX2J3nM5vesyIcJ575/lFI1Pbdy17Fz7O8l/M3/o5T6Tinll+S5cQnHfkQp1cLMPjxqsO7DqcWxAEaJSEUA9QAMTTjesQA2iEg5ABsS7mdGRgA4lOT+OwBmJBz3NQADPLKq9OEDAD+LSAUAD4GfQ6b/3pVSxQAMB1BbRKqAuqPdkXm/+wUAWqZ4zN733ApAuYTbIACfptMa3cUC3Hvs6wBUEZFqAI4CGAcACee97gAqJ7znkwR7kCqe9rDuq6nFInJeRHYn/H4LPGkVA4/ZmOa3EMCTnlmh+1BKFQfQBsDnCfcVgMcBLE94SaY8bgBQSuUD0BDAPAAQkWgRuY774HtPICsAX6VUVgC5AJxHJv3uRWQLgKspHrb3PXcA8KWQbQD8lFJF0mel1mPr2EXkFxGJTbi7DRxDBfDYl4rIXRE5CeAYaA9SxdMGy9bU4mIeWku6opQqBaAGgO0AConIeYBGDUBBz63MbcwE8DKA+IT7BQBcT/LHnJm/+zIALgH4IiEk+rlSKjfug+9dRM4CeB/AadBQ3QCwC/fPdw/Y/57vt/NffwBrEn536tg9bbBMTS3ObCil8gAIAfCCiNz09HrcjVKqLYAIEdmV9GEbL82s331WADUBfCoiNQDcRiYM/9kiIV/TAUBpAEUB5AZDYSnJrN99atw3/wNKqQlgSmSJ8ZCNl6V57J42WPfd1GKlVDbQWC0RkRUJD180QgEJPyM8tT438SiA9kqpMDDs+zjocfklhImAzP3dhwMIF5HtCfeXgwYss3/vANAMwEkRuSQiMQBWAHgE9893D9j/nu+L859Sqi+AtgB6SWLjr1PH7mmDdV9NLU7I28wDcEhEpid56gcAfRN+7wtgZXqvzZ2IyDgRKS4ipcDveKOI9AKwCUCXhJdluuM2EJELAM4opR5MeKgpgIPI5N97AqcB1FNK5Ur4+zeO/b747hOw9z3/AKBPQrVgPQA3jNBhZkEp1RLAGADtReROkqd+ANBdKZVDKVUaLDz5K80NiohHbwBag9UjxwFM8PR63Hysj4Fu7z8A9ibcWoP5nA0AQhN+Bnh6rW78DBoD+DHh9zIJf6THAHwLIIen1+fG464OYGfCd/89AP/75XsH8CaAwwD2A1gEIEdm/e4BfA3m6mJAL2KAve8ZDIvNSjj37QMrKT1+DBYf+zEwV2Wc72Ynef2EhGM/AqCVmX1oaSaNRqPRZAg8HRLUaDQajcYU2mBpNBqNJkOgDZZGo9FoMgTaYGk0Go0mQ6ANlkaj0WgyBNpgaTQajSZDoA2WRqPRaDIE/wdtY4IkGaf2fQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 504x360 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig=plt.figure() #set up the figures\n",
    "fig.set_size_inches(7, 5)\n",
    "ax=fig.add_subplot(1,1,1)\n",
    "draw_pitch(ax) #overlay our different objects on the pitch\n",
    "plt.ylim(-2, 82)\n",
    "plt.xlim(-2, 122)\n",
    "#plt.plot(x_axis,y_axis,'ro')\n",
    "#plt.plot(x,y,'bo')\n",
    "#plt.axis('off')\n",
    "\n",
    "for i in range(len(ozil_pass)):\n",
    "    # annotate draw an arrow from a current position to pass_end_location\n",
    "    ax.annotate(\"\", xy = (ozil_pass.iloc[i]['pass_end_location'][0], ozil_pass.iloc[i]['pass_end_location'][1]), xycoords = 'data',\n",
    "               xytext = (ozil_pass.iloc[i]['location'][0], ozil_pass.iloc[i]['location'][1]), textcoords = 'data',\n",
    "               arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\", color = \"blue\"),)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEyCAYAAACS3SWDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX/MZuVZ578XjGVmdJthGKnsvLDQdeJuJbpDJixrN6YpNUIlTP9oDW5TxxYzMekqGjcCkmyziSY0GmvN1m4mpRY3pFixLsStWgQas3+AHSjSHxQ7SysMjIWJpZqdGZH12j+e8yyHZ86P+8d1n3Pf9/l+ksm87/Occ+77vOd9z+e5rvu67yOqCkIIIaR0zpm7A4QQQogFFBohhJAqoNAIIYRUAYVGCCGkCig0QgghVUChEUIIqQIKjRBCSBVQaIQQQqqAQiOEEFIF2+buQJsLLrhAL7nkkrm7QQghJCMef/zxk6r63WPbZSW0Sy65BA8++ODc3SCEEJIRu3fv/muX7ZhyJIQQUgUUGiGEkCqg0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFTgLTUQ+LiIviMiXWq/tFpH7ReRrzf/nN6+LiPyWiBwTkSdE5IoUnSeEEELW+ERonwBwzcZrtwB4QFX3AXig+R4ArgWwr/l3GMBH47pJCCGEDOMsNFX9cwB/u/HyQQB3Nl/fCeAdrdd/V1c8DGCXiFwU21lCCCGkj9gxtDeo6gkAaP6/sHl9L4BnW9sdb147CxE5LCJHReToyZMnI7tDCCFkqaQqCpGO17RrQ1U9oqoHVPXAnj17EnWHEEJI7cQK7ZvrVGLz/wvN68cBXNzabgvA85FtEUIIIb3ECu0+AIearw8BuLf1+k821Y5XAfj2OjVJCCGEpMD58TEi8kkAbwGwR0SOA/gAgNsBfEpEbgTwDIB3NZt/BsDbARwDcArAew37TAghhJyFs9BU9Sd63rq6Y1sF8P7QThFCCCG+cKUQQgghVUChEUIIqQIKjRBCSBVQaIQQQqqAQiOEEFIFFBohhJAqoNAIIYRUAYVGCCGkCig0QgghVeC8UgghhEzF6dOnz3ptx44dM/SElASFRgiZlC5ZWe1H6S0bCo0QkpRQgVm1RcktBwqNEGLOlBIbo90Xyq1uKDRCiAk5SayPzT5ScHVBoRFCgilBYkMweqsLCo0Q4k3pIuuCcisfCo0Q4kyNIuuCcisTCo0QMoq1yE6dOmVynJ07d5ocZwjKrRwoNEJILxYis5KX67FTSo5FJXlDoRFCziJWZCkl5ts2BbccKDRCyGsIldmcEhui3a/UKcq+nx1FNw0UGiEEQH0i62Ld1ynG3tqE/mwpQj8oNEJI0A03VGRWBSYxN/spo7YYGPH5QaERsmCmEFmqUn+r8atS5NaGlZfdUGiELBRf0fiIbI75ahY3+blSkjFQbq9CoRGyMFKJLKdJ17E3+RLFBqzOe8lSo9AIWRApZJYy0uvCVzIxcis1HblUqVFohCwEH/FYisy6CjJmntm6z7VHbUuVGoVGSOVYR1Aux5uylD9EcEuI2pYoNQqNkIqxjMrGjhUiMZf+pRZOzVHb0qRGoRFSKVPJLHXRSNd+rjdpH+HULLalQKERUhmWKcYYkaWsevSdgza12FzbIrZQaIRURA5RWc5z0KYSm29bKVlS2tFEaCLyCwB+GoAC+CKA9wK4CMDdAHYDeAzAe1T1ZYv2CCGvZe6obKpCESsR+YrNYpmtucW2BM6JPYCI7AXwcwAOqOrlAM4FcAOADwL4kKruA/AtADfGtkUIOZspZHbq1KnO/U6fPj0qwL59Q2gfzyXCdClkcZ2iUPIjdZZCtNAatgHYISLbAOwEcALAWwHc07x/J4B3GLVFCEHYTTZUZr7bW0psCJe2chLbVD+XpRKdclTV50Tk1wE8A+A0gM8CeBTAS6r6SrPZcQB7u/YXkcMADgPA1tZWbHcIqZ4UCwr7yMxXfGvOnDkz+P4Y27dvH3x/LLXnmoqcKg3JFKQ90UITkfMBHARwGYCXAPw+gGs7NtWu/VX1CIAjALB///7ObQhZOrFRge9xfaKyoePHSmzoWH2CixWb65gXpZYfFkUhbwPwdVV9EQBE5NMAfgjALhHZ1kRpWwCeN2iLkMVgUS1oJTMfkVlKbIh1OzFii43WLCohKTU7LIT2DICrRGQnVinHqwEcBfAQgHdiVel4CMC9Bm0RUjVWJe+pU4xd242JLNWixO12u+Q2JDaXaC11CpJSs8NiDO0REbkHq9L8VwB8AasU4v8EcLeI/Erz2h2xbRFSA6nnaVnJLFZkKRclHpNbn9hCorWpUpCpyLFPqTCZh6aqHwDwgY2XnwZwpcXxCSmFOZ8JFrpCvnVUFrsUlssNeExuZ86cCYrWLFKQSxJIbnClEEIcyOnhlV1MnWL0FZnPz8937cY+SYVEa1YpSF+YdrSBQiPJsZBB6k+9uQurj5jnlrnIzCUqi1k9xBWXpa18xRYTrY31NZcoLZd+TAWFRpJgLYih44390ZYqqyFi03ohMnONymKXwXKtLAS6r31ftDOUhvSRGlOP+UKhEVPmXpi2diwe1RJS/OESlVk8YqZvW985ZUPRmm/BSF8fc08RLlGoFBoxYUlSmRrfasHU42UuQuxrL5SxIpAhscVIbaz6MVepLVFmAIVGDKDM7LF++rNFijF2wrVLP9eErpTfJaCUUhuCacfpodBIMBSZHbHRzNQy8xFZyO+JywM8+8TWFa11bdsntb7+hI6nTc2SJUqhkSAoszCsJxu7rCI/tk+szEILQ3wYKgQZEttYtNYltTkkZdXekmUGUGgkAMpsmCkeDxIisq79fGQWKzKfn8vQDd5nvMxSakwh5g+FRrygzF5ljudahZbExxZ/jMnMujBkc7+Y8TIXEfmkH7v6mkPakbKl0AhxYs6HMrp+iIh55EtbZr4pxpDCEF9ix8s2peYioZKitBz7NAcUGnFmSdFZCQJb47Pk1NjKH0OyihFZyCNlfNZidInWxqQWE6XFEBvdUWavQqER0jCXxEI/KPiunRhT/BFSGBL7XLShx8L0RWHA2dFajNRySSf2QZm9FgqNOFFjdFaawNaEzPOyGi+zEpnLGFnXMUOKN8akVio1nIM1FBpZFFNKzPpDgNWK+qlkFvNcNNflrrrE5jJmNta2TxRmKcSco78SodDIKDVEZzmU0odgvZq+q8x80o8xz0QbYmi5K5dS+7Z4fKK0EtKOjM66odBItaSUWCrJ+/TZZ86X1XhZyPJYLv1d4/NomL5orU8+oe+lIrQ9yqwfCo1URyqRzRWB+fTDNyrbPJ5rijHVM9HGlrxyWcKqLaehSKzEsbTS+js1FBqphhQim3ocLLQfrsUZIeNlFus8huK6KshQyf1Q6rGPuUr4h6DMxqHQyCAljJ9NvT6iDzF9i3lQZsx6jH0ym+oxMq6PhxmSmmt6MUR2rgwJyLcdyswNCo0US44ii+1T7KogLgUaIeNlPiuJDPXPhaFiEJ95ZK6pR1IPFBopEiuZpZ4TZt2+lcg233cdLwuZYN23bRufYpDNaG2KYo85Kx0pYncoNFIUOYgsF4kB7nO/rFOM1o+QCSkG6UsX9o1/9W0/dfTmI0bKzA8KjQyyY8eObMbRLGSWYpmpFG2OtWchss33Q6KyWJH10ff8M9e5Zq7jaZvkNOeMMvOHQiNFMJfMrMvqY9vxWY3DOsU4xSNkXB4TE5Ni9InGcqx0JMNQaCR7pk7xhbQ5h8T6jmERlW2+Z7Xq/hh9BSFD42Z9khoTUsporE+aru0xOguDQiNZM6XMSpFY33FcxOKbYoxdqHiob2t8C0LGpNYlqpxSiSQdFBoZZa5xtCnHrayWnIo5bojE+vrjM5bmIrO5C0J8pbamK0rLvYQ/577lDoVGsmQqmbm2M5fEho5nKbLN91xklrogxPcJ07FthorEtV+MENNDoZHsmEJmc4osRmJ9ffIdS7OOyrr65Cu3TaEMFYOEpBhLSDsyOouDQiNOTJV2DJWZtXisxRgrsb4+hRSFxMhsTGQxvyNdkZlvMUgO6cTQ9ufudw1QaKR4LOVjeaxUEuvbL1Rkm/uGRGxDPzffgpC+BYnb/fCJvizK73OP7MgKCo04kzpKSznny0pmoROefY4x1I+Q6kbrsbL2e7Gpxr4J1Ov31q/1RV5DEVmqFGNIJEUhToOJ0ERkF4CPAbgcgAJ4H4CnAPwegEsBfAPAj6vqtyzaI/Uxp8ymEFmMUGOKQqaMymI/7PSlHLukNhSl5ZB29KW0/uaKVYT2YQB/oqrvFJHXAdgJ4JcBPKCqt4vILQBuAXCzUXtkJnJZCmsqmaUWmW801rfPkMg237eOymJXCBlbUX8sUkslMJc05WbfKaZ5iRaaiLwewA8D+CkAUNWXAbwsIgcBvKXZ7E4AnwOFRjpIMaF5TpGlkFjffj4i2zyGr+RcRBYSaY9NoB7ar4RU3lgfKUE7LCK0NwJ4EcDviMgPAngUwE0A3qCqJwBAVU+IyIVdO4vIYQCHAWBra8ugO2TppJTZ1CLziX5CV8f3lZnlUlebx+iTmst4GiEWQtsG4AoAP6uqj4jIh7FKLzqhqkcAHAGA/fv3q0F/SGIs047W0Vmq6ChUZJbRWN8+KaOyze+tVwnxWRUkJRRkHVgI7TiA46r6SPP9PVgJ7ZsiclETnV0E4AWDtsiCyU1m1iLzHYvyEdnm+7FRmdUqIT6rguQQmQ21H9K3uc+nNqKFpqp/IyLPisj3qepTAK4G8JXm3yEAtzf/3xvbFlkuVhV0m1hHZbmLbPN9C5lZROtDq4LMTV8/XPqXyzksBasqx58FcFdT4fg0gPcCOAfAp0TkRgDPAHiXUVukEizGXVyOZSkzKyn57tPVH9/J1SFVjD6rhAz1axOfCMxlrplV9DalgBid2WMiNFV9HMCBjreutjg+yY8py/djUo2x0c/Y9hZzx4b2sRDZ5vshVYwuMvP5gNJV2ehDDulHkh9cKYTMguvNrxaZWfQlZJUQ14jNNcVoXeE4VAQyZ9rR4knVTDdOD4VGimUumZUgss1tUqQYLVPGrvRFZlNXQnJCdZ5QaCRbQlOaqSTSd2yLbWP6EFMUYi2zsWvWdeOfOhJb92Hd5pCMUvWLAkwDhUYmx2oSbhc5yGwqkXVt65MutJSZ64eP2LGv9b6bUnJhbFumCMuHQiNZEjpnzGd7y/Re33Z9204psq7355BZe/spIxTf8TDf7bvOhXKcBwqNVIPPjXUKmbmKzLrtqWQ2VZVrKJZSGRo/izkWsYVCI5PiEl2lnpyck8xSt2tVll+SzFyEMef4GUkHhUaqJbVUphCZ67Zj21jKLFeGBDQmMEt5UYTzQaGRrLCMzlzIWWZWfRv7fug9qzUbQ3At4hiKsizGzyzL9ZluTAuFRqrEZ/yqjZXMrEUW2rex74eirzll1mazstFlgeDYKIlRVplQaGQyYleU6MI6UhrbZg6ZhW7nK7MxWU0hs9AIxkVAffPPQuXF6sb8oNBINkz56d+iWrBrGxeZxa40kiJymnLcbFMEXRKwTDe6SsY33egL043podBIsbjexENSjSHRW6jMUkzkjkk15gTTjcQHCo1URYiIXBgTgqXMYiM461RjStryCC2w8KlutEo3DrVF5uOcuTtAyBgx0YRFdFayzEKYMt3YxaZ0fJa7Wr/H6sZlQqGRIvFJ3fluE8tcMusipwnQQ2NnscUgPqnIITEyyiobCo0sGuvobAqZ9eEir7nGzlxl5hqdpS4GGYLVjflCoZEsSBFJuKQbffCVmcsxQrbNKepywTX68pWC9XjYmGRDYbpxOig0shimXq9wyrRgrnPExqKZoYd1WkRnUxSDkHyg0EjW5FpePld0NgVDN3tXqe3YscNLZnNFZ2PFIC7vUY75wLJ9UgXWAoidt5UqOssh3bi+qW/2ZUx2LjKbKzrrkxLTjWVBoRGCfCPBudi5c+foz8TnZu2zNFXfca3Th77FICR/mHIkwZT86TMm0kmdbkxJ180/9XUcmsM1FHn5CMsqOvOde8Z0Y15QaKRKQqTTR6p0Ywhj0YslO3fujLphd+0/Nm42lmosKTor+QNfqVBohFSMa1Rh+eTmPhG6jpv5tAO4R2djsBikfDiGRkgl7NixIyo6HNq/ffPuilh9KiNdy/ZjBeXSx1TFIGQeGKGRLOi7SS31xmJROj+0fd/xXdda3Pzn2nafzEJTjSHRGYtB6oVCI8QYq/RUiNR8Xo+R2hhd89BcZZYC62KQMTh+Ng8UGomCf7hx+Mzdct3XSmqh19ZnQvXQtjlHZ0vNHOQOhUYmY8qbQI5ppdCIaAqpjYltrGBiaDsXmVmNk3XhE52RsqHQyCKILT9vsylLi7ldc0ttrI31fl3/+tgU5ZjMhvrkG5114fIhxyLdSOaDQiNV4CusuW5UY2LyEYTLvkOv+7bhytj8s77XLasaY+epDeEifjIPFBqJhn/AflFa7A3RKlobEmiI2Fzmn/X1xaWtmOisry3+7taF2Tw0ETkXwFEAz6nqdSJyGYC7AewG8BiA96jqy1btkfqInUcVg8vahW22b9/u9Ly1vnNa31T72lzfaMfmhXXt37dvX19c55+FMCSzLhFZrAgSWgzCdGP5WEZoNwF4svX9BwF8SFX3AfgWgBsN2yKFYlW+nvpmM1Ry3kdI0YfLPK6YNKTr8WKqGvva3pTX2LiZzziYSzqSlYjLw0RoIrIF4McAfKz5XgC8FcA9zSZ3AniHRVuE5ELXp/6YSkYXsfmmCH3H0GLF1rX/0PdDYuorBOnCtVSf6ca6sYrQfhPALwH4p+b7CwC8pKqvNN8fB7C3a0cROSwiR0Xk6MmTJ426Q5aIbzXiWBQWEqUNbeciC5exq1Cx+RzHtZJxc9uxdrtkttn/vv6GbGMNo768iRaaiFwH4AVVfbT9csem2rW/qh5R1QOqemDPnj2x3SEzYfVpt7RPzX1RQ0wacb1/TDrSN1rzkZaL7MYitaFxs67zcInOxhjajqKqA4uikDcDuF5E3g5gO4DXYxWx7RKRbU2UtgXgeYO2SAX4FmDkRFff+wpEXAs/gOFHzrRvtj5FIH3tDxWNjPXFhbFIbSztFxqd+RSDuAiclEd0hKaqt6rqlqpeCuAGAA+q6rsBPATgnc1mhwDcG9sWWS5WhSGxace+voxFED6TlocImYvmk4b06YvLPpuvua6f2H7NNzpjtLVcUj4+5mYAd4vIrwD4AoA7ErZFSCeu5fVDdJW190VqwNkPF23vA4w/MNQlchuK2oYiNtdtu/riy9CHhZj0o29UR5aDqdBU9XMAPtd8/TSAKy2PT8gYFulM12P0becqNsBWbi6yGtt2qB1XXKNal/1ixs76qhtJvXClEGJGqZ+SXfrtU3yxZvv27aMTetvFH7FpSZ/UYkjqcoyhlGdff1xThhaFH5b7kDzhE6vJ4nCJwPrScyGrfrSlNpb+3Ly5hhSUdPXHt3Bks40QxuQ6VhzS9WHAIt1Y6gcvMg4jNJIdvsUIY7gse+SaJoud+7SO2lyit/UxQ8v3u/Yb29YiWnFpN6Q4ZOy1XJhr+TbCCI0slJixtqFCCp/xMeBs2Q5FcJbl+y7n4PvzcV0lxUVmIdFZ3/45y4/YQqGRYogt1hjDtZpxaPvNfde49sdVcFNUOVqIwFVmbcZkREGRPig0sghiyvfHpAaMp5m6bsJWEVxuVY6bx9tsu4sxceUy7nXq1CkKNWMoNGJGaWMHvoUfQwIKWWUjRHJDUwIsxNbefnOfMXzGF31SjS7t5SaZ06dPZyPhJUGhkeyYW4yh1Yzrfdv4notrleNQ5aSV2Nr7hOJT6eiyKr5r4Q1ZJhQaKYYU6z/2RV5D42M+RRNdQoiJ4nwmcoeIra8NX1wqRHOLqtowwioTCo0sBt9xNJeij9Dikz58xuJcl97yXaQ4VG5jUwuGtvWNzuaUjes4GqU4PRQaMcEn6shtpX2rSkYg/tx8UpZ9orISW3ufUFyKQ2JL7GP7yEKPeqDQCBlhTGptQqsZh9pu4zO2Zyk2X1yXChsa78q56IPkCYVGorGMzqwKQnzTgSmqGNvHHsO1r75LXgHhYutrx6Vvm3T9DIaeKD50rKnSeEMpQ6Yd84RCI4tiaBzNRYKWUcxm212ESNZKbJvthOIrM5f9+2CF47Kh0EgUU5XY991s5yrxt56I3IdLgYa12Iba8qFPRGMy8xFoCalIRmnTQaGRyZgq3RhDSOWi680q9vws13IE3CZpD7U3ts8mXdHTmMxiZOdDXwrRIu1IpoNCI8GUXNk4RMzCxUNYis9lpQ8LsW3uG4qLzKaCEVO9UGgkCOtoauh41nJxmY8WuuK8BT6TsUMXKe7a3ue5bS74Pm26pInXa1gckhcUGknOHFKwanNOsbVxGbMLnUA9tPpIGxfJuT7jbZOYp4ZbEZJ2JHlBoRFvconOYvrhu2qIdcFEDGOVlkPLeXXt5yrt2ApC1+elDW1rBSVVJxQa8cJXInPf/FMwRSrMZ51I34WUrZe8GsNnSayx7UO2S128wbRjPlBoxJkUMpty7GyTmGekpcanytBabL7tj+3bh8/N3XXbM2fOREWSTDuWDYVGnEhRUh9zzBxK/KckZj5ae39fsXW1H4vviiKpoKTq45y5O0DqJDa6mipVWeLKEjt37hxN4w2tpTg0ljW0byxjx/YZY0tJyCR+19/XpX0QmxoKjYwydapxakqUGpBObO19LWTicpzUkVmNY7nkbJhyJIPkKLMUMnSZXBxyvBhc++KyFmPMw0r7ZNR1zBABzjnfjGnHuqDQSC9zRVFW6wiGHGdTRH1SmSKqc+3LmphxspD5dhYiGJNZSBuxhSEAl8IqFQqNdBIis9JSjS7klI50jSLHHlgKhK08YonFjd9XILkIh1FhOig0YoLVzY9jHeP4rL0YKrb2MYaOE0IOUmlDwdQDhUbOIlUUVVp0ljuuYrN4cGnMk7hDBRYjGYu0IykPCo28hlSpximPsybVqvmWWPRxbIK4T+GHz/XPLdJywSftyEnW5UGhkf9PSplZRWe+x5lbai43z5CnVW9iEa0B6Z7IvRRyGadbKpyHRgCUcwPLuSx8Pber/c/ieD6Mpdlcj5lygrULrm1bfVgp5fefDBMtNBG5WEQeEpEnReTLInJT8/puEblfRL7W/H9+fHdJTlhGZ6mjKAvBdB3PSl4ubbkS+giXLuYWWwy5rtNJ0mGRcnwFwC+q6mMi8s8APCoi9wP4KQAPqOrtInILgFsA3GzQHjFmSZ9OfRfdzSl95DNXzKISso3L89hKgWnBeokWmqqeAHCi+frvReRJAHsBHATwlmazOwF8DhRadoTenGpZu67EG5vPuKDr07lDJlTnfm3J8jAdQxORSwHsB/AIgDc0sltL78KefQ6LyFEROXry5EnL7pARSr0hlZoCsyRFCtJX7qkWM+b1JaGYCU1EvgvAHwD4eVX9O9f9VPWIqh5Q1QN79uyx6g5JSO6l8EvBWmq+x2yTeqV+QlwwEZqIfAdWMrtLVT/dvPxNEbmoef8iAC9YtEVsKDU6W8Ob54qcpLaG14bMRfQYmogIgDsAPKmqv9F66z4AhwDc3vx/b2xbxIYYmaWKzkLniw2tJD8HITfy2P5bj6n5HrOPkLE2ipDEYFHl+GYA7wHwRRF5vHntl7ES2adE5EYAzwB4l0FbJJKcbv5WzFGkYHnjtaggTDGBPGQF/i5crw9lRmKxqHL8XwCk5+2rY49P7MhdZrE35a4bYsw5z3GDnSLidI3SrOkTW00iK7Fqtia49BWpmhJvlqFSS5F69D2uC3NfE0qnXrj01ULIPTpbw5vNiilu+j6r0dd+XXx+3rHXZm6h1wyFtgCsZDZVuX7qpaRKIbd1K3O8JkN9in18TI7nS4ah0Cpn7sgs5tMobyjpP80v7ZlhSxP+0qDQKmZumVkwxeK/tbGUm7ZVdDZlupGkhUUhlZJCZnPPFfNdWDg1VmXtxJ/UYk11fAoxLRRaZeQalaUoR88lWhjqh4XsUpfy+5bx5/7Q1L7orGs/K8Hk8ru4dJhyrITTp09nK7M1S/x0Ole6tNYbrKXMfNtgdWP+UGiFU4LI2ix1nb9YseVWHFKDpJf4e1g7FFqhzCUyq5vKksVWC1Oei0tbc0VnNV3T0qHQCmItsbkjMss/4CU+diTmES1TtJNTG66Rra/Mun6WKWW2pN/vOWFRSObMLa8+UhQGbP7R53ruFsxdWNFF6BqPKRdGHmMoVZpqLIzkC4WWIaXcyFPflH1uPKX8zNrkKLVQrM7F6vluvjJjdFYHFFomlHhDBvK5KU9505jzWvmW8Pten5iV+Ns3eJ82Q9KWc8vMFcpsWii0mSlVZG2WNsHYMjWayweCNhaPl0k1tjZWjWklszFYCJInLAqZkRpk1mapS1TFFrX4/symKA7JbY3H7du3j0ZlljJjqrFMGKHNQG0i2yQ09VQ6czw525WQSHCuB4Fu9mGMEDGllhmZB0ZoE5PjzS4lS1xceIrHvkz16X+uSG0sIgPGMwLWMvOB0dk8MEKbkKXJbJO+G0mNUVzI+ou+UVTqApE1a7GkjtasHjgaGmGNSYipxvyh0CZi6TIbYorobQ5ppl5UOKSNmCKUFGKzXnKLMls2FNoEUGbz4yNNS/lNIZyQNoDw89yUkKvgYtKXqUQ2tq/L/q7HIemh0BJDmZWH9XPXcpRaaDtdpBpncxFJjIxcBESZlQWFlhDKrA4s5tnlLDUgr3HM1CJz2d+1HyQvKDRCHIm9+ecqtdC2LLGMhKZKMfr0iUwDhZYIRmf1EnPzz11qa1LLLYU05ojKKLO8oNAICWDKVF2o1IDwD1aW44ipH2xqkaJ0PY7vMcm0UGgJKCU68/2DLOW8piT3Ag6r1UumHE9y/b20EpnrsXyPSaaHQlsYMX+MrvsuTXwlFHDkvCwX4Pd7OZfIfI5L5oFCWwBT/xHO+Uc/1w17yrRg7BheSJspSLXIMmW2XCi0ylnaH+HY+aa8kcekBacut2//nKaSW+o1LlOJzOfYZF4otErhH2A3ls8y62JKqa3bA+LnyG0S+3OJ/f2jyEgIFFpl8A87y808AAAJxklEQVTQjxQpuDkKOKyrLuf4PUpZmEGZLYPkj48RkWtE5CkROSYit6Rub8nwDzCc2Id0bpK6VH2o3ZIe1+PbX9/rFPqz4N9SmSSN0ETkXAAfAfAjAI4D+LyI3KeqX0nZ7tLgH58dlhHb3MUbOT5oNVS0U0RkIe2QvEidcrwSwDFVfRoARORuAAcBVC20KR4b0m6L2GN1Da2KN6znkU0luKkj1bkiY5IHqYW2F8Czre+PA/i3idtcBPzjS08u0Zp1X9b92WSu1UDahP5eU2QESC806XhNX7OByGEAhwFga2srcXemI1WUxj++6bGM1iweRbMmRYXmHMwhsZh2Sb6kFtpxABe3vt8C8Hx7A1U9AuAIAOzfv/81sisda6nxD3A+cklBtpljLpkVsYUvc7VN8ia10D4PYJ+IXAbgOQA3APgPidvMithUEf/48sHyA0rKMvtc5Tbl3LRUfSB5k1RoqvqKiPxHAH8K4FwAH1fVL6dsM1d8xMY/unyxjrpTrNqfevJ4SB9CmXtsjpRF8onVqvoZAJ9J3U4p8A+rfFJNxgbSVB+mWAlk7PgxWI7l8e9tWXClEEICSVH4M9Vz1nK70VNixAIKjZAIUlWz5jgp2hrrqkqKjFBohESS+pEsNcktxdQAioysodAIMWKKFWLmWvEjBkqMTAWFRoghUz9A03rFj1hST86myMgQFBohCZjzydBTSW6qlUUoMeIKhUZIQuYUW5tSHifThiIjvlBohExALmLLHUqMxEChETIhFNvZUGLECgqNkBkoYe3FlFBiJAUUGiEzk8Pai1NAiZHUUGiEZEZNgqPEyJRQaIRkTurFha2gvMjcUGiEFMjckqO8SI5QaIRUgo9khuRHWZFSodAIWSCUFqmRc+buACGEEGIBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCqoBCI4QQUgUUGiGEkCqg0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCqoBCI4QQUgUUGiGEkCqg0AghhFRBlNBE5NdE5Ksi8oSI/KGI7Gq9d6uIHBORp0TkR+O7SgghhPQTG6HdD+ByVf0BAH8F4FYAEJE3AbgBwPcDuAbAb4vIuZFtEUIIIb1ECU1VP6uqrzTfPgxgq/n6IIC7VfUfVPXrAI4BuDKmLUIIIWQIyzG09wH44+brvQCebb13vHmNEEIIScK2sQ1E5M8AfE/HW7ep6r3NNrcBeAXAXevdOrbXnuMfBnAYALa2tro2IYQQQkYZFZqqvm3ofRE5BOA6AFer6lpaxwFc3NpsC8DzPcc/AuAIAOzfv79TeoQQQsgYsVWO1wC4GcD1qnqq9dZ9AG4QkfNE5DIA+wD8RUxbhBBCyBCjEdoI/xXAeQDuFxEAeFhVf0ZVvywinwLwFaxSke9X1f8b2RYhhBDSS5TQVPV7B977VQC/GnN8QgghxBWuFEIIIaQKKDRCCCFVQKERQgipAnm10n5+RORFAH89sMkeACcn6s5U8JzKocbz4jmVQY3nBLif179Q1e8e2ygroY0hIkdV9cDc/bCE51QONZ4Xz6kMajwnwP68mHIkhBBSBRQaIYSQKihNaEfm7kACeE7lUON58ZzKoMZzAozPq6gxNEIIIaSP0iI0QgghpBMKjRBCSBUUITQRuUZEnhKRYyJyy9z9CUFELhaRh0TkSRH5sojc1Ly+W0TuF5GvNf+fP3dffRGRc0XkCyLyR833l4nII805/Z6IvG7uPvoiIrtE5B4R+Wpzzf5d6ddKRH6h+d37koh8UkS2l3itROTjIvKCiHyp9VrntZEVv9XcO54QkSvm63k/Pef0a83v3xMi8ocisqv13q3NOT0lIj86T6+H6Tqn1nv/SURURPY035tcp+yFJiLnAvgIgGsBvAnAT4jIm+btVRCvAPhFVf3XAK4C8P7mPG4B8ICq7gPwQPN9adwE4MnW9x8E8KHmnL4F4MZZehXHhwH8iar+KwA/iNX5FXutRGQvgJ8DcEBVLwdwLoAbUOa1+gSAazZe67s212L1+Kp9WD1I+KMT9dGXT+Dsc7ofwOWq+gMA/grArQDQ3DduAPD9zT6/3dwnc+MTOPucICIXA/gRAM+0Xja5TtkLDcCVAI6p6tOq+jKAuwEcnLlP3qjqCVV9rPn677G6Qe7F6lzubDa7E8A75ulhGCKyBeDHAHys+V4AvBXAPc0mJZ7T6wH8MIA7AEBVX1bVl1D4tcLq6Ro7RGQbgJ0ATqDAa6Wqfw7gbzde7rs2BwH8rq54GMAuEblomp6603VOqvpZVX2l+fZhrB6UDKzO6W5V/QdV/TqAY1jdJ7Oi5zoBwIcA/BKAdkWiyXUqQWh7ATzb+v5481qxiMilAPYDeATAG1T1BLCSHoAL5+tZEL+J1S/nPzXfXwDgpdYfYonX640AXgTwO00q9WMi8p0o+Fqp6nMAfh2rT8UnAHwbwKMo/1qt6bs2tdw/3gfgj5uviz0nEbkewHOq+pcbb5mcUwlCk47Xip1rICLfBeAPAPy8qv7d3P2JQUSuA/CCqj7afrlj09Ku1zYAVwD4qKruB/B/UFB6sYtmTOkggMsA/HMA34lVmmeT0q7VGMX/PorIbVgNWdy1fqljs+zPSUR2ArgNwH/uervjNe9zKkFoxwFc3Pp+C8DzM/UlChH5Dqxkdpeqfrp5+Zvr0Lr5/4W5+hfAmwFcLyLfwCoV/FasIrZdTVoLKPN6HQdwXFUfab6/ByvBlXyt3gbg66r6oqr+I4BPA/ghlH+t1vRdm6LvHyJyCMB1AN6tr04aLvWc/iVWH6j+srlnbAF4TES+B0bnVILQPg9gX1ON9TqsBkPvm7lP3jRjS3cAeFJVf6P11n0ADjVfHwJw79R9C0VVb1XVLVW9FKvr8qCqvhvAQwDe2WxW1DkBgKr+DYBnReT7mpeuBvAVFHytsEo1XiUiO5vfxfU5FX2tWvRdm/sA/GRTRXcVgG+vU5O5IyLXALgZwPWqeqr11n0AbhCR80TkMqwKKf5ijj76oKpfVNULVfXS5p5xHMAVzd+bzXVS1ez/AXg7VlU+/xvAbXP3J/Ac/j1WIfQTAB5v/r0dqzGnBwB8rfl/99x9DTy/twD4o+brN2L1B3YMwO8DOG/u/gWcz78BcLS5Xv8DwPmlXysA/wXAVwF8CcB/B3BeidcKwCexGgf8x+ameGPftcEqlfWR5t7xRayqPGc/B8dzOobVuNL6fvHfWtvf1pzTUwCunbv/rue08f43AOyxvE5c+ooQQkgVlJByJIQQQkah0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCquD/AcBv01BDiblzAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 504x360 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots()\n",
    "fig.set_size_inches(7, 5)\n",
    "\n",
    "x_coord = [i[0] for i in ozil_pass[\"location\"]]\n",
    "y_coord = [i[1] for i in ozil_pass[\"location\"]]\n",
    "\n",
    "#shades: give us the heat map we desire\n",
    "# n_levels: draw more lines, the larger n, the more blurry it looks\n",
    "sns.kdeplot(x_coord, y_coord, shade = \"True\", color = \"black\", n_levels = 30)\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}