{ "cells": [ { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "done\n" ] } ], "source": [ "import json\n", "import os\n", "from pandas.io.json import json_normalize\n", "import numpy as np\n", "import seaborn as sns\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from matplotlib.patches import Arc, Rectangle, ConnectionPatch\n", "from matplotlib.offsetbox import OffsetImage\n", "#import squarify\n", "from functools import reduce\n", "path = \"\"\"C:\\\\Users\\\\Koushik\\\\Downloads\\\\open-data-master\\\\open-data-master\\\\data\\\\my_events\\\\\"\"\"\n", "Xg_req = pd.DataFrame(data=None)\n", "for filename in (os.listdir(path)):\n", " #print(filename)\n", " \n", " with open(\"%s\" % path + filename,encoding=\"utf8\") as data_file: \n", " data = json.load(data_file)\n", " df = pd.DataFrame(data=None)\n", " \n", " df = json_normalize(data, sep = \"_\")\n", " \n", " #df = df[(df['type_name'] == \"Shot\")]\n", " #df = df.loc[:,['location','shot_body_part_id','shot_end_location','shot_one_on_one','shot_technique_id','shot_type_id','under_pressure','shot_outcome_id']]\n", " #print(df.shape)\n", " Xg_req = Xg_req.append(df,ignore_index=True,sort=False)\n", " #df.drop(df.index, inplace=True)\n", " \n", "print(\"done\")\n", "df = Xg_req" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
bad_behaviour_card_idbad_behaviour_card_nameball_receipt_outcome_idball_receipt_outcome_nameball_recovery_offensiveball_recovery_recovery_failureblock_deflectiondribble_nutmegdribble_outcome_iddribble_outcome_name...pass_miscommunicationshot_aerial_wonshot_open_goal50_50_outcome_id50_50_outcome_nameblock_offensivemiscontrol_aerial_wonfoul_committed_penaltyshot_deflectedshot_redirect
204NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
749NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1651NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2741NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3890NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
4594NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNTrueNaNNaNNaNNaNNaNNaNNaN
4647NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
4784NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNTrueNaNNaNNaNNaNNaNNaNNaNNaN
4918NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
6271NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
7406NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
7924NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
9525NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
10606NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
10877NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNTrueNaN
12291NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
13231NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
13839NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
13975NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
14105NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
14173NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
14561NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
15815NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
15894NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNTrueNaN
15928NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
19882NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
20227NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
20823NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
20917NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
21975NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
152707NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNTrueNaNNaNNaNNaNNaNNaNNaN
155048NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
158183NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
161937NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNTrueNaNNaNNaNNaNNaNNaNNaNNaN
162329NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
163634NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
163781NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
164961NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
165854NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
166107NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNTrue
166301NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
166464NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
166557NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
167304NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
168706NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171222NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171224NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171226NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171228NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171232NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171234NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
171236NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
172725NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNTrueNaNNaNNaNNaNNaNNaNNaN
173646NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNTrueNaNNaNNaNNaNNaNNaNNaN
175473NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
175627NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
176100NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
176213NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNTrueNaNNaNNaNNaNNaNNaNNaNNaN
176750NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
178726NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNTrueNaN
\n", "

200 rows × 118 columns

\n", "
" ], "text/plain": [ " bad_behaviour_card_id bad_behaviour_card_name \\\n", "204 NaN NaN \n", "749 NaN NaN \n", "1651 NaN NaN \n", "2741 NaN NaN \n", "3890 NaN NaN \n", "4594 NaN NaN \n", "4647 NaN NaN \n", "4784 NaN NaN \n", "4918 NaN NaN \n", "6271 NaN NaN \n", "7406 NaN NaN \n", "7924 NaN NaN \n", "9525 NaN NaN \n", "10606 NaN NaN \n", "10877 NaN NaN \n", "12291 NaN NaN \n", "13231 NaN NaN \n", "13839 NaN NaN \n", "13975 NaN NaN \n", "14105 NaN NaN \n", "14173 NaN NaN \n", "14561 NaN NaN \n", "15815 NaN NaN \n", "15894 NaN NaN \n", "15928 NaN NaN \n", "19882 NaN NaN \n", "20227 NaN NaN \n", "20823 NaN NaN \n", "20917 NaN NaN \n", "21975 NaN NaN \n", "... ... ... \n", "152707 NaN NaN \n", "155048 NaN NaN \n", "158183 NaN NaN \n", "161937 NaN NaN \n", "162329 NaN NaN \n", "163634 NaN NaN \n", "163781 NaN NaN \n", "164961 NaN NaN \n", "165854 NaN NaN \n", "166107 NaN NaN \n", "166301 NaN NaN \n", "166464 NaN NaN \n", "166557 NaN NaN \n", "167304 NaN NaN \n", "168706 NaN NaN \n", "171222 NaN NaN \n", "171224 NaN NaN \n", "171226 NaN NaN \n", "171228 NaN NaN \n", "171232 NaN NaN \n", "171234 NaN NaN \n", "171236 NaN NaN \n", "172725 NaN NaN \n", "173646 NaN NaN \n", "175473 NaN NaN \n", "175627 NaN NaN \n", "176100 NaN NaN \n", "176213 NaN NaN \n", "176750 NaN NaN \n", "178726 NaN NaN \n", "\n", " ball_receipt_outcome_id ball_receipt_outcome_name \\\n", "204 NaN NaN \n", "749 NaN NaN \n", "1651 NaN NaN \n", "2741 NaN NaN \n", "3890 NaN NaN \n", "4594 NaN NaN \n", "4647 NaN NaN \n", "4784 NaN NaN \n", "4918 NaN NaN \n", "6271 NaN NaN \n", "7406 NaN NaN \n", "7924 NaN NaN \n", "9525 NaN NaN \n", "10606 NaN NaN \n", "10877 NaN NaN \n", "12291 NaN NaN \n", "13231 NaN NaN \n", "13839 NaN NaN \n", "13975 NaN NaN \n", "14105 NaN NaN \n", "14173 NaN NaN \n", "14561 NaN NaN \n", "15815 NaN NaN \n", "15894 NaN NaN \n", "15928 NaN NaN \n", "19882 NaN NaN \n", "20227 NaN NaN \n", "20823 NaN NaN \n", "20917 NaN NaN \n", "21975 NaN NaN \n", "... ... ... \n", "152707 NaN NaN \n", "155048 NaN NaN \n", "158183 NaN NaN \n", "161937 NaN NaN \n", "162329 NaN NaN \n", "163634 NaN NaN \n", "163781 NaN NaN \n", "164961 NaN NaN \n", "165854 NaN NaN \n", "166107 NaN NaN \n", "166301 NaN NaN \n", "166464 NaN NaN \n", "166557 NaN NaN \n", "167304 NaN NaN \n", "168706 NaN NaN \n", "171222 NaN NaN \n", "171224 NaN NaN \n", "171226 NaN NaN \n", "171228 NaN NaN \n", "171232 NaN NaN \n", "171234 NaN NaN \n", "171236 NaN NaN \n", "172725 NaN NaN \n", "173646 NaN NaN \n", "175473 NaN NaN \n", "175627 NaN NaN \n", "176100 NaN NaN \n", "176213 NaN NaN \n", "176750 NaN NaN \n", "178726 NaN NaN \n", "\n", " ball_recovery_offensive ball_recovery_recovery_failure \\\n", "204 NaN NaN \n", "749 NaN NaN \n", "1651 NaN NaN \n", "2741 NaN NaN \n", "3890 NaN NaN \n", "4594 NaN NaN \n", "4647 NaN NaN \n", "4784 NaN NaN \n", "4918 NaN NaN \n", "6271 NaN NaN \n", "7406 NaN NaN \n", "7924 NaN NaN \n", "9525 NaN NaN \n", "10606 NaN NaN \n", "10877 NaN NaN \n", "12291 NaN NaN \n", "13231 NaN NaN \n", "13839 NaN NaN \n", "13975 NaN NaN \n", "14105 NaN NaN \n", "14173 NaN NaN \n", "14561 NaN NaN \n", "15815 NaN NaN \n", "15894 NaN NaN \n", "15928 NaN NaN \n", "19882 NaN NaN \n", "20227 NaN NaN \n", "20823 NaN NaN \n", "20917 NaN NaN \n", "21975 NaN NaN \n", "... ... ... \n", "152707 NaN NaN \n", "155048 NaN NaN \n", "158183 NaN NaN \n", "161937 NaN NaN \n", "162329 NaN NaN \n", "163634 NaN NaN \n", "163781 NaN NaN \n", "164961 NaN NaN \n", "165854 NaN NaN \n", "166107 NaN NaN \n", "166301 NaN NaN \n", "166464 NaN NaN \n", "166557 NaN NaN \n", "167304 NaN NaN \n", "168706 NaN NaN \n", "171222 NaN NaN \n", "171224 NaN NaN \n", "171226 NaN NaN \n", "171228 NaN NaN \n", "171232 NaN NaN \n", "171234 NaN NaN \n", "171236 NaN NaN \n", "172725 NaN NaN \n", "173646 NaN NaN \n", "175473 NaN NaN \n", "175627 NaN NaN \n", "176100 NaN NaN \n", "176213 NaN NaN \n", "176750 NaN NaN \n", "178726 NaN NaN \n", "\n", " block_deflection dribble_nutmeg dribble_outcome_id \\\n", "204 NaN NaN NaN \n", "749 NaN NaN NaN \n", "1651 NaN NaN NaN \n", "2741 NaN NaN NaN \n", "3890 NaN NaN NaN \n", "4594 NaN NaN NaN \n", "4647 NaN NaN NaN \n", "4784 NaN NaN NaN \n", "4918 NaN NaN NaN \n", "6271 NaN NaN NaN \n", "7406 NaN NaN NaN \n", "7924 NaN NaN NaN \n", "9525 NaN NaN NaN \n", "10606 NaN NaN NaN \n", "10877 NaN NaN NaN \n", "12291 NaN NaN NaN \n", "13231 NaN NaN NaN \n", "13839 NaN NaN NaN \n", "13975 NaN NaN NaN \n", "14105 NaN NaN NaN \n", "14173 NaN NaN NaN \n", "14561 NaN NaN NaN \n", "15815 NaN NaN NaN \n", "15894 NaN NaN NaN \n", "15928 NaN NaN NaN \n", "19882 NaN NaN NaN \n", "20227 NaN NaN NaN \n", "20823 NaN NaN NaN \n", "20917 NaN NaN NaN \n", "21975 NaN NaN NaN \n", "... ... ... ... \n", "152707 NaN NaN NaN \n", "155048 NaN NaN NaN \n", "158183 NaN NaN NaN \n", "161937 NaN NaN NaN \n", "162329 NaN NaN NaN \n", "163634 NaN NaN NaN \n", "163781 NaN NaN NaN \n", "164961 NaN NaN NaN \n", "165854 NaN NaN NaN \n", "166107 NaN NaN NaN \n", "166301 NaN NaN NaN \n", "166464 NaN NaN NaN \n", "166557 NaN NaN NaN \n", "167304 NaN NaN NaN \n", "168706 NaN NaN NaN \n", "171222 NaN NaN NaN \n", "171224 NaN NaN NaN \n", "171226 NaN NaN NaN \n", "171228 NaN NaN NaN \n", "171232 NaN NaN NaN \n", "171234 NaN NaN NaN \n", "171236 NaN NaN NaN \n", "172725 NaN NaN NaN \n", "173646 NaN NaN NaN \n", "175473 NaN NaN NaN \n", "175627 NaN NaN NaN \n", "176100 NaN NaN NaN \n", "176213 NaN NaN NaN \n", "176750 NaN NaN NaN \n", "178726 NaN NaN NaN \n", "\n", " dribble_outcome_name ... pass_miscommunication shot_aerial_won \\\n", "204 NaN ... NaN NaN \n", "749 NaN ... NaN NaN \n", "1651 NaN ... NaN NaN \n", "2741 NaN ... NaN NaN \n", "3890 NaN ... NaN NaN \n", "4594 NaN ... NaN NaN \n", "4647 NaN ... NaN NaN \n", "4784 NaN ... NaN True \n", "4918 NaN ... NaN NaN \n", "6271 NaN ... NaN NaN \n", "7406 NaN ... NaN NaN \n", "7924 NaN ... NaN NaN \n", "9525 NaN ... NaN NaN \n", "10606 NaN ... NaN NaN \n", "10877 NaN ... NaN NaN \n", "12291 NaN ... NaN NaN \n", "13231 NaN ... NaN NaN \n", "13839 NaN ... NaN NaN \n", "13975 NaN ... NaN NaN \n", "14105 NaN ... NaN NaN \n", "14173 NaN ... NaN NaN \n", "14561 NaN ... NaN NaN \n", "15815 NaN ... NaN NaN \n", "15894 NaN ... NaN NaN \n", "15928 NaN ... NaN NaN \n", "19882 NaN ... NaN NaN \n", "20227 NaN ... NaN NaN \n", "20823 NaN ... NaN NaN \n", "20917 NaN ... NaN NaN \n", "21975 NaN ... NaN NaN \n", "... ... ... ... ... \n", "152707 NaN ... NaN NaN \n", "155048 NaN ... NaN NaN \n", "158183 NaN ... NaN NaN \n", "161937 NaN ... NaN True \n", "162329 NaN ... NaN NaN \n", "163634 NaN ... NaN NaN \n", "163781 NaN ... NaN NaN \n", "164961 NaN ... NaN NaN \n", "165854 NaN ... NaN NaN \n", "166107 NaN ... NaN NaN \n", "166301 NaN ... NaN NaN \n", "166464 NaN ... NaN NaN \n", "166557 NaN ... NaN NaN \n", "167304 NaN ... NaN NaN \n", "168706 NaN ... NaN NaN \n", "171222 NaN ... NaN NaN \n", "171224 NaN ... NaN NaN \n", "171226 NaN ... NaN NaN \n", "171228 NaN ... NaN NaN \n", "171232 NaN ... NaN NaN \n", "171234 NaN ... NaN NaN \n", "171236 NaN ... NaN NaN \n", "172725 NaN ... NaN NaN \n", "173646 NaN ... NaN NaN \n", "175473 NaN ... NaN NaN \n", "175627 NaN ... NaN NaN \n", "176100 NaN ... NaN NaN \n", "176213 NaN ... NaN True \n", "176750 NaN ... NaN NaN \n", "178726 NaN ... NaN NaN \n", "\n", " shot_open_goal 50_50_outcome_id 50_50_outcome_name block_offensive \\\n", "204 NaN NaN NaN NaN \n", "749 NaN NaN NaN NaN \n", "1651 NaN NaN NaN NaN \n", "2741 NaN NaN NaN NaN \n", "3890 NaN NaN NaN NaN \n", "4594 True NaN NaN NaN \n", "4647 NaN NaN NaN NaN \n", "4784 NaN NaN NaN NaN \n", "4918 NaN NaN NaN NaN \n", "6271 NaN NaN NaN NaN \n", "7406 NaN NaN NaN NaN \n", "7924 NaN NaN NaN NaN \n", "9525 NaN NaN NaN NaN \n", "10606 NaN NaN NaN NaN \n", "10877 NaN NaN NaN NaN \n", "12291 NaN NaN NaN NaN \n", "13231 NaN NaN NaN NaN \n", "13839 NaN NaN NaN NaN \n", "13975 NaN NaN NaN NaN \n", "14105 NaN NaN NaN NaN \n", "14173 NaN NaN NaN NaN \n", "14561 NaN NaN NaN NaN \n", "15815 NaN NaN NaN NaN \n", "15894 NaN NaN NaN NaN \n", "15928 NaN NaN NaN NaN \n", "19882 NaN NaN NaN NaN \n", "20227 NaN NaN NaN NaN \n", "20823 NaN NaN NaN NaN \n", "20917 NaN NaN NaN NaN \n", "21975 NaN NaN NaN NaN \n", "... ... ... ... ... \n", "152707 True NaN NaN NaN \n", "155048 NaN NaN NaN NaN \n", "158183 NaN NaN NaN NaN \n", "161937 NaN NaN NaN NaN \n", "162329 NaN NaN NaN NaN \n", "163634 NaN NaN NaN NaN \n", "163781 NaN NaN NaN NaN \n", "164961 NaN NaN NaN NaN \n", "165854 NaN NaN NaN NaN \n", "166107 NaN NaN NaN NaN \n", "166301 NaN NaN NaN NaN \n", "166464 NaN NaN NaN NaN \n", "166557 NaN NaN NaN NaN \n", "167304 NaN NaN NaN NaN \n", "168706 NaN NaN NaN NaN \n", "171222 NaN NaN NaN NaN \n", "171224 NaN NaN NaN NaN \n", "171226 NaN NaN NaN NaN \n", "171228 NaN NaN NaN NaN \n", "171232 NaN NaN NaN NaN \n", "171234 NaN NaN NaN NaN \n", "171236 NaN NaN NaN NaN \n", "172725 True NaN NaN NaN \n", "173646 True NaN NaN NaN \n", "175473 NaN NaN NaN NaN \n", "175627 NaN NaN NaN NaN \n", "176100 NaN NaN NaN NaN \n", "176213 NaN NaN NaN NaN \n", "176750 NaN NaN NaN NaN \n", "178726 NaN NaN NaN NaN \n", "\n", " miscontrol_aerial_won foul_committed_penalty shot_deflected \\\n", "204 NaN NaN NaN \n", "749 NaN NaN NaN \n", "1651 NaN NaN NaN \n", "2741 NaN NaN NaN \n", "3890 NaN NaN NaN \n", "4594 NaN NaN NaN \n", "4647 NaN NaN NaN \n", "4784 NaN NaN NaN \n", "4918 NaN NaN NaN \n", "6271 NaN NaN NaN \n", "7406 NaN NaN NaN \n", "7924 NaN NaN NaN \n", "9525 NaN NaN NaN \n", "10606 NaN NaN NaN \n", "10877 NaN NaN True \n", "12291 NaN NaN NaN \n", "13231 NaN NaN NaN \n", "13839 NaN NaN NaN \n", "13975 NaN NaN NaN \n", "14105 NaN NaN NaN \n", "14173 NaN NaN NaN \n", "14561 NaN NaN NaN \n", "15815 NaN NaN NaN \n", "15894 NaN NaN True \n", "15928 NaN NaN NaN \n", "19882 NaN NaN NaN \n", "20227 NaN NaN NaN \n", "20823 NaN NaN NaN \n", "20917 NaN NaN NaN \n", "21975 NaN NaN NaN \n", "... ... ... ... \n", "152707 NaN NaN NaN \n", "155048 NaN NaN NaN \n", "158183 NaN NaN NaN \n", "161937 NaN NaN NaN \n", "162329 NaN NaN NaN \n", "163634 NaN NaN NaN \n", "163781 NaN NaN NaN \n", "164961 NaN NaN NaN \n", "165854 NaN NaN NaN \n", "166107 NaN NaN NaN \n", "166301 NaN NaN NaN \n", "166464 NaN NaN NaN \n", "166557 NaN NaN NaN \n", "167304 NaN NaN NaN \n", "168706 NaN NaN NaN \n", "171222 NaN NaN NaN \n", "171224 NaN NaN NaN \n", "171226 NaN NaN NaN \n", "171228 NaN NaN NaN \n", "171232 NaN NaN NaN \n", "171234 NaN NaN NaN \n", "171236 NaN NaN NaN \n", "172725 NaN NaN NaN \n", "173646 NaN NaN NaN \n", "175473 NaN NaN NaN \n", "175627 NaN NaN NaN \n", "176100 NaN NaN NaN \n", "176213 NaN NaN NaN \n", "176750 NaN NaN NaN \n", "178726 NaN NaN True \n", "\n", " shot_redirect \n", "204 NaN \n", "749 NaN \n", "1651 NaN \n", "2741 NaN \n", "3890 NaN \n", "4594 NaN \n", "4647 NaN \n", "4784 NaN \n", "4918 NaN \n", "6271 NaN \n", "7406 NaN \n", "7924 NaN \n", "9525 NaN \n", "10606 NaN \n", "10877 NaN \n", "12291 NaN \n", "13231 NaN \n", "13839 NaN \n", "13975 NaN \n", "14105 NaN \n", "14173 NaN \n", "14561 NaN \n", "15815 NaN \n", "15894 NaN \n", "15928 NaN \n", "19882 NaN \n", "20227 NaN \n", "20823 NaN \n", "20917 NaN \n", "21975 NaN \n", "... ... \n", "152707 NaN \n", "155048 NaN \n", "158183 NaN \n", "161937 NaN \n", "162329 NaN \n", "163634 NaN \n", "163781 NaN \n", "164961 NaN \n", "165854 NaN \n", "166107 True \n", "166301 NaN \n", "166464 NaN \n", "166557 NaN \n", "167304 NaN \n", "168706 NaN \n", "171222 NaN \n", "171224 NaN \n", "171226 NaN \n", "171228 NaN \n", "171232 NaN \n", "171234 NaN \n", "171236 NaN \n", "172725 NaN \n", "173646 NaN \n", "175473 NaN \n", "175627 NaN \n", "176100 NaN \n", "176213 NaN \n", "176750 NaN \n", "178726 NaN \n", "\n", "[200 rows x 118 columns]" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d = df.query('shot_outcome_id == 97')\n", "d" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idperiodtimestamplocationpass_end_locationpass_recipient_name
4eea20658-0e9f-484a-90d3-dccdc589d81f100:00:00.187[60.0, 40.0][49.0, 35.0]Toni Kroos
10ad723dee-c477-4604-970a-48f6f3e54e45100:00:04.200[55.0, 43.0][37.0, 59.0]Niklas Süle
11289cd84d7-c140-4322-9d13-1cd4abd61829100:02:53.600[65.0, 23.0][71.0, 27.0]Marco Reus
129f189456f-9790-468f-937c-251068dfb181100:03:03.517[60.0, 25.0][56.0, 38.0]Sami Khedira
143408b675d-cbcb-4edd-baff-32bf2c93107d100:03:15.080[67.0, 45.0][56.0, 32.0]Toni Kroos
\n", "
" ], "text/plain": [ " id period timestamp location \\\n", "4 eea20658-0e9f-484a-90d3-dccdc589d81f 1 00:00:00.187 [60.0, 40.0] \n", "10 ad723dee-c477-4604-970a-48f6f3e54e45 1 00:00:04.200 [55.0, 43.0] \n", "112 89cd84d7-c140-4322-9d13-1cd4abd61829 1 00:02:53.600 [65.0, 23.0] \n", "129 f189456f-9790-468f-937c-251068dfb181 1 00:03:03.517 [60.0, 25.0] \n", "143 408b675d-cbcb-4edd-baff-32bf2c93107d 1 00:03:15.080 [67.0, 45.0] \n", "\n", " pass_end_location pass_recipient_name \n", "4 [49.0, 35.0] Toni Kroos \n", "10 [37.0, 59.0] Niklas Süle \n", "112 [71.0, 27.0] Marco Reus \n", "129 [56.0, 38.0] Sami Khedira \n", "143 [56.0, 32.0] Toni Kroos " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ozil_pass = df[(df.type_name == 'Pass') & (df.team_name == 'Germany') & (df.player_name == 'Mesut Özil') ]\n", "pass_column = [i for i in df.columns if i.startswith(\"pass\")]\n", "ozil_pass = ozil_pass[[\"id\", \"period\", \"timestamp\", \"location\", \"pass_end_location\", \"pass_recipient_name\"]]\n", "ozil_pass.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def draw_pitch(ax):\n", " # focus on only half of the pitch\n", " #Pitch Outline & Centre Line\n", " Pitch = Rectangle([0,0], width = 120, height = 80, fill = False)\n", " #Left, Right Penalty Area and midline\n", " LeftPenalty = Rectangle([0,22.3], width = 14.6, height = 35.3, fill = False)\n", " RightPenalty = Rectangle([105.4,22.3], width = 14.6, height = 35.3, fill = False)\n", " midline = ConnectionPatch([60,0], [60,80], \"data\", \"data\")\n", "\n", " #Left, Right 6-yard Box\n", " LeftSixYard = Rectangle([0,32], width = 4.9, height = 16, fill = False)\n", " RightSixYard = Rectangle([115.1,32], width = 4.9, height = 16, fill = False)\n", "\n", "\n", " #Prepare Circles\n", " centreCircle = plt.Circle((60,40),8.1,color=\"black\", fill = False)\n", " centreSpot = plt.Circle((60,40),0.71,color=\"black\")\n", " #Penalty spots and Arcs around penalty boxes\n", " leftPenSpot = plt.Circle((9.7,40),0.71,color=\"black\")\n", " rightPenSpot = plt.Circle((110.3,40),0.71,color=\"black\")\n", " leftArc = Arc((9.7,40),height=16.2,width=16.2,angle=0,theta1=310,theta2=50,color=\"black\")\n", " rightArc = Arc((110.3,40),height=16.2,width=16.2,angle=0,theta1=130,theta2=230,color=\"black\")\n", " \n", " element = [Pitch, LeftPenalty, RightPenalty, midline, LeftSixYard, RightSixYard, centreCircle, \n", " centreSpot, rightPenSpot, leftPenSpot, leftArc, rightArc]\n", " for i in element:\n", " ax.add_patch(i)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEyCAYAAACmpOSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd4VNXzxt9LKNJrABGB0JtIExCRItJBqgIqAiJKE1RUsKP4o9gVEEPvLXTpTToEQgcpoRMIECCk953fHy/73ZItdzebbCLn8zx5wt695ezdcObOnHdmNBGBQqFQKBSZnWzeHoBCoVAoFHpQBkuhUCgUWQJlsBQKhUKRJVAGS6FQKBRZAmWwFAqFQpElUAZLoVAoFFkCZbAUCoVCkSVQBkuhUCgUWQJlsBQKhUKRJciekRcrVqyYlCtXLiMvqVAoFIpMzJEjR+6JiK+efTPUYJUrVw5BQUEZeUmFQqFQZGI0Tbumd18VElQoFApFlkCXwdI07UNN085omnZa07TFmqY9oWman6ZpgZqmBWuatlTTtJzpPViFQqFQPL44NViapj0FYDiA+iJSE4APgF4AJgL4VUQqAQgHMCA9B6pQKBSKxxu9IcHsAHJrmpYdQB4AoQBeArD80ftzAXTx/PAUCoVCoSBORRciclPTtJ8AXAcQB2ALgCMAHopI8qPdQgA8Zet4TdPeBfAuAJQpU8bmNcqVK4dr13SvuykUCoUii1G2bFlcvXo1TedwarA0TSsMoDMAPwAPAQQAaGdjV5udIEVkGoBpAFC/fn2b+1y7dg2qkaTicWHOnDnYuXMn5syZ4+2hKBQZhqZpaT6HnpDgywCuiEiYiCQBWAmgMYBCj0KEAFAawK00j0ahUCgUCjvoMVjXATTSNC2PRhPZEsC/AP4B0OPRPn0BrEmfISoUCoVCocNgiUggKK44CuDUo2OmARgF4CNN0y4CKApgZjqOU6FQKBSPOboqXYjINwC+sdp8GUADj49IoVAoFP8ppk0DgBfTfB5V6UKhUCgU6cqGDQADcWlDGSyFQqFQpCshIQCzn9KGMlgKhUKhsCAiAihfHvjySyA0NO3nUwZLoVAo0sj06UDlyt4eReajYEFg40bg7l2genWgWzfgn3/cO1dCAvDgAQDcTfO4MrS9iEKhUGQGwsOB4cOB5cuBXLm8PZq0k5QExMQA0dGu/9g7LiYGeOIJIGdOYPVqIDAQuHnT9bHdugU8+SRw/bohzZ9TGSyFQvGf4vJleghF7azx79wJ9OkDNG4M5MkD5M8PnDkD1KiR/mMTAeLj3TMsjoxMcjKQL5/pJ29ey9fmPwULAk89Zf994094OPD118CmTcDEicAAN8ubh4QATz8NXL+e9vunDJbCYwQHA506AYsWAXXrens0iseVkSOBN94AevSw/f7p08DMmcCECcBbbwGTJgFBQY4Nlghw8iTXdtJqXHLmTG0c7BmYJ5+03Cd/ftv75coF2Kt8lJAA/PorMHq0a/exZUvg5ZeBCxeAAgVcO9ackBCgdGn3jzdHGSyFx8ibFzh/HmjeHOjSBRg7Fihb1tujUjxOiDB09csv9vcZNgxYtw64fRsoUYLHjB0L9O1r/5irV4F33mGIzJ5HUqKEc68lb14gewbOupGRwEsvAUeOAJ98Avj46D/20CHPjOHGDWWwFJkQ49Ogjw9DLXXrAt9/Dwwe7O2RKR4Xbt5keKxcOfv7JCdz8h41Chg4kEbo/n0aLnteip8fcPhwugw53bh1C2jfnh5enjwUPvj6Zvw4QkKoOPQESiWo8BiaRsXVkCHAwYN8qmvc2NujUmRGYmM9I5e2JjAQaNDAvuEBgBkzgFKluC5TqhS35chhlF7/N7h+nf/3OnUCwsK4ZhUW5p2xGNewPIEyWAqPUqkSUK0aQ4F//QU8+6y3R6TIbISF8cGmfXvPn/vQIaBhQ/vvR0YC334LtGoFXLwIjBvHSECDBlnPg3JESgoweTLXnrp2Zbjy3j3vjMWTa1jKYCk8St++nIymTwfmzgX27PH2iBSZicuXgRdeoNHKm9fz5zd6WPaYOBFo25Y5Rb/8Apw4QWFBs2Zcp/qv4OfHB4Jp04D33gOqVmXI0xso0YUi09LOrLXntGlUYZ04kTaVkeK/wdGjQMeOwCuvAPv2Ud7tSVJSGIZ+7jnb79+4Qa//998pshg0iN7YpEnA8887DiPq4eJF5kNVq5a283iKf/7h2lXDhkCjRt4ZQ2IiPbuSJT1zPuVhKdKNTp0YevngA2+PRJEZ2LULmDqVhuOttzy/pvLvvxT+FCli+/0vvqAAaOJE4IcfKFG/dIkeWbZs7hus6GjmK1WpAnz6qfvj9zT+/vSuPNDo121CQxmOdEWd6AhlsBTpyi+/ALt3A6tWeXskCm/z4YdA7doU5PTrB0RFefb8jtavjh4Ftm3jk36RIvTyduwAmjal4MIdUlJoFCpXBtavp0K2Sxf3x+9J7twBtm5lPpo38aTgAlAGS5HO5MsHzJvHJ9vbt709GoW3mTmTk6ivL42IJ7G3fiXCZOLRoymy+Plneh3btnH9yl2OHwfWrmVS7rVrQIUKnqlLKMJqHCkp7p9j9myge3dWtfAmnly/ApTBUmQAjRsz6fKdd7y38KvwPsnJNFjvvsvXjnKl3MGeh7VuHcOPYWFMoq1fn9vTarDq1WPkYOJEGsKQEKpk3SUmhmKlKlWAFi1YYcIdDAae57333B+Lp/Bk0jCgDJYig/j6a8azp0/39kgU3mLdOhqpmjU9f+6YGJYGs06jSEoyJQn/+Sfwf//H7ZcvA3FxrESeFsaO5bpZv358XaKEe+f59lugTBlg6VJGIooXp7LPHbZto2dlNMzexNMellIJKjKEnDmB+fO5ZvDSS0DFit4ekSKjMUqs04OjR2kIrSuvT59OQ7BjBz07Y6mwbdtYKy8tgoSDB/mZjh/n3/eVK+6fr1Ytjum11yhWypHD/XNlBrGFkZAQzxYPUB6WIsOoXp2eVp8+DA8pHh+uXmXI7tVX0+f8ttav5s8HPvuMVcY3brQs/prWcGBMDJWOkyfTwwLSllfWrh1rHPboQa/wpZds7xcSwnEb7HTqCA2lce7d2/2xeBIlulBkaYYNoxBjwgRvj0SRkRjFFrlzp8/5ba1f+fuzht306XxQMgoQDAZO6i1bun+9UaNoIF01wCkpqdemDAYm3D/9NEOWFy/aNlgrV7Ki/Pbt9gUZs2ZxTJkl71GJLhRZmmzZqGD64w+2dFD890lKshRbpAfWHtb9+0wirlKFdfVy5GAXAREmshcr5v6T/5YtVAdOmqT/mORkqmVr1KC835wvvmDR3jlz+P/j8GHLST4qCnj7beDjjxl69PGxLcVPSck8YguAn/nuXc8lDQPKYCm8QOnSNFh9+rAIquK/zbp19HTSq0Hi7duc1M0VegUKAB060JPKlQsYMQIYPz7tcvbwcIYYZ80CChd2vn9iokn5N2sWMGUK74eR6dPZ9Xj1alaNB1In2c6axZYkvXvzc9rrkBwQQEO9cSNw7px7n8+ThIYyfcHdPDdbKIOl8Aq9ejGJ1NWmcoqsR3qKLQCGA597zlJkYKy+HhbG2oW5cplk9GkxWEOHspiss+Pj42mcKlakQZozh7lV5kKPzZuBr74CNmygx2ePESMonZ82jUYyZ07b+y1ZwnzH0FDWRixblv/P/gs1BI04VQlqmlYFwFKzTeUBfA1g3qPt5QBcBfCaiIR7dniK/zJTplCGbCzhpPjvcfUqQ1wrV6bfNezlX7VuzXqB/frRk1++nP2v9u+nfNxVli6lGtFRwnNMDNfOfvqJsvLly20nM588yQjDqlX6crcmTKChjI5mknJyMn8HB3NN7OhRVts4fpweZ8mS/H3qlOM+X+mJpwUXgA4PS0TOi0htEakNoB6AWACrAIwGsF1EKgHY/ui1QqGbIkX4VPjwobdHokgvZswA3nwz/cQWgP0KF999Z8qP6tWLf2sHDjA0WaiQa9e4dQsYPpzrUHnypH4/MpIhx/LleY0NG7jOZWtcN2+yCPCkSfT+7GEwcNJfupQPd5oGnDkDnD5N4VLLlix9dv4814pateL62tixNJxTp3LfbFaz/K5dwN69aaukoQeveFhWtARwSUSuaZrWGUDzR9vnAtgJYJTnhqZ4HHD0H1aRtUlK4vrLtm3pdw2DgR6co5YiAEN4b70FrFjhejhQhOtWgwalvk54OKu/T5kCtGnDCumOkpGjomishgwBevbkue/do5dk9JaMvy9e5FqcCEOLFSowX+v77+k9GR8CUlJoKNesoSe7bh2NuL0uv1eusJzUrVtc52vRAujWDcif37X74gxPV7kAXDdYvQAsfvTvEiISCgAiEqppWnFbB2ia9i6AdwGgTJky7o5ToVBkMf7+m5NsWqtJOOLCBa7rFLc5+5jImZOT8tq19JJcwd+fa2FffmnaFhZG72baNBa8PXDAcTJ8ZCRw9iyNXrZsDNU1aEDjBFCUUakSaxF2787fFStS4diyJb2iggVpvL7/nsVtjWtymzYxBFi7Nr3HUaNshwCjo1nR3mDgOQ8fBpYtY9+6M2dYwd6ThIQ4f5BwFd0GS9O0nABeAfCZKxcQkWkApgFA/fr1VSU5heIxIb3FFoDzDsPmdOhAef3zz+s//8WLNFR79lDIERoK/PgjRRS9elE6bzQccXFsV3LhQmqPKSqKHlH27ED//iy7NGwYjVTRovbXmD77jD/GHDJNY7WY3btN1zVWtgA4xvh4qgRPnzaFEE+fppGrVo1GrUYNPkj8+y/vSXokGqfHGpYrHlY7AEdF5M6j13c0TXvykXf1JIC7nh2aQqHIqly5wjy79G4r46zDsDnJyTQY167pq6qenMww4ldfsYrF0KHAokVA587Ab79RQv7DDyajdOcOw3BGT6lhQworKlfmcfPmce1Ib1Lv7t00NMuXW25v2pQeV+/eNKT//EMD1KMH9zdWjq9Rg+Wq3n6bv8uXp2TeYKCAIzSUBr9CBX3jcRVvr2H1hikcCABrAfQFMOHR7zUeHJdCocjCTJ/OyTo9xRYAJ9zXX9e3744dlL8vXUojZA+j2OHbb7lWNG0ak3bz56cXtWcPt1euTI+lc2f+u0wZ240KV6zgOtf+/fqNlQhDe99/T6/p8mWTp7R3L6tdLFrE+1usGK/bowcwZgzHYk/6bvx83brR4DnaLy2kpPAeGctWeQpdBkvTtDwAWgEwd/AnAFimadoAANcBpFOVMIVCkZVISmI1kx070vc68fEMedWpo2//bdsYXvvhB1aXCAuzDN0Z/33pEg1BeDiNRdOmPK5ePXop9hJ3bXHwIHOjNm92Hh4ToRDi9Glg8WKq/377jeG+vHl53Tx5aJySkrh2lzs31+WeeUb/mLJnZymo9OT2bYY6PW0QdRksEYkFUNRq231QNahQKBT/Y+1ahsWqVUvf6xw/zrUgWzJza65do5x840YapPz5eZwxfFepEj0OEWDhQuY0de9OWb67TRAvXWLobc4c+0Y1PJxrZCdP0lDlzMn7duIEw5E9e3KtKTyc4orwcGDBAgo3Spbk2FwxVhlFeoQDAdVeRKFQeJiMEFsAXL/SK7jYsYNKPGPrjuLFqfIzEhTE8FtgIPfr0IEKOncTbh884Dm++gpo397+ftmzM3m+Rw+uORUvThFF9uz0rozXT0oCjh2j8rJrV0rho6LY6yszkh6CC0CVZlIoFB7k8mVWXejePf2vdeiQPsFFcjJDbIMHM4n5o4+YsyTCdaV27WgEWrakxPvCBXpW7hqrhASez5hv5Yj8+VkUuEULGquYGK6dTZzI6ycnM8G4Rg2GBQ8cYN3Bjz9m+PC119wbY3qTXh6WMlgKRRYnJYVP496qGWeOUWxhLOSanuj1sBISuH5l7OBbuza3PfccW5506UL5et++9Az9/Vm01R1EqMrz9XUvr+nXX1kHsF49qv/q1KFx3bmT7509yyTmiAiuZWXW4tHpkTQMqJCgQpHluXaNLSs2bGDFbnfXXNJKYiLFFjt3pv+17t+naKJKFef7Xr7Me7JgAZNnx46l2q9YMXosxmriQ4bQy+rUyf1xffMN167++Sd1SSRnhIXxwWPVKnpOhw4xbNm1q8nba9eOlTrKlqWx3rOH72c2QkKAunU9f15lsBSKLI6mMbR0/Tq9huXLWcIno1m7lgbE6MmkJ4cOsbisLRm5NVu30lOZMYPGdMwYChnatzcdv3YtjcyJE+6PafZsCjYOHHAu509J4TpXWBh/jh3jOlrFijRAw4czPGnrPMZ2Le3bM1crsxos5WEpFIpUGAyUEBvLB7VsyQnYlYoOniCjxBaAvvWrlBTmQI0Zw/vTvj3g58cKFQBl4fv20cC+9x5FFu7W09u+na1ydu1yXibKWBswKooFoMPDKaLQNAo1li6lB2UPY2WLChWA9993b7zpTXqJLpTBUiiyOCkpVJUNHsySPIcPZ3yL9EuX6CWsXZsx1wsMtN/B2CiyGDeOBiglhfckKYnihc8/B0qUoOFavJg5Q336AC++6N5YzpyhJD4gQJ93qWlcM5s7F/j0U66nZc9OQcjs2Y6PNa8g4uNDgUhEhPfCwLZISWEVjVKlPH9uJbpQKLI4uXPTW/jgA4YDs2fnk3tGMn0684YyQmwhYtvDSkxk2K9KFf6eNAn4+WcakWLFWHXh9ddNcvaePbmudeEC17Xc4fZtekW//EKxhB6OHwcaN2byckICJ/iiRTleZ5hXEMmZk/dg3z73xp5e3L3L9i2uJFjrRRkshcJD7N0L/PVXxl/36adZUaFYMSrUPF112xmJiUyOtefxeJrLlzlhG5/gzbv7LltGL2XXLooTtm+3bA766ac0ZvfvU2wRF8ewmjuTa0wMpesDBtA7ckZEBK/VrBk94Y4daUz9/Bi2zJfP8fHGdi1t2jAsWKcOC+Du3u362NOT9Fq/ApTBUig8xty5fGL2BkZF2siR9Bpu3864a69Zw4lXj2LPExi9q5gYejbly7MKREAAGxg2bWrad9s2y/5XZcqwjt6vv7JqeuvWDBe6SkoKvbVnnrFsO2ILEWD+fBrUpUtZWWPHDnpL3boxhDlggPNzdOjA9a4BA+idnTzJz7Zrl+vjT0+UwVIoMjkinDTbtPHuOEqW5NP+zz9n3DXN21tkBHv2MP+ofHkm/q5fzwoQ1jlZkZFU/Vk3Cf3sMxqs2Fh6ZqtW0Ut0hY8+okTe399xgvHp0wz/ffghX//0E9ff6tWjWCYggGttRmm9LYwt7u/do4dYqBAfEF5/nTlkp07ReGcW0ktwASiDpVB4hLNn6eVklJfhiE8/5USZEVy8SKPQrZvnzy3C3KgNG/g6PJxVIKZPZ3hsxw6u2dmr07d7N42YtTQ8Pp4eUuPGDKlVr07PTC+//07PbcUK+8Vdo6K4ptioEQ1K//4MZb71lskbXrKEhsr83g0aRC/Q15e1DrNloxd46RIFF7NmAQMHsi7i8OH8bLVrMyScWUivpGFAGSyFwiNs3kzvyt1yPp6kdGkWec0Ipk9nhYj0WGCfNo3rgjVq0CuqWJGTfo4cLE9Uo4bj463DgQANXZ8+PJ8xkfjSJYZz9bBmDdcI16+np2ONCA1R+fJcS2vYkKWqfvzRUjKfkMCw3g8/WP7NjB/PtiFNm1LAkjcv78PIkTzG35/eVfHizLkDTP2xMgsqJKhQZHKMButxIj3FFkeOUH5evz49qIcPuW34cOYfORMoALYN1tixVFS+8w7w0kvA1Kk0Ylu2OC9zdPgwj1u92tTt15xz54AmTRgezZmTScTbttluFvnXX/TszJWF9+8D333H/lpVq9LL8ven9P7vv2nIOnZkUvicOabjjB2IMwvKYCkUmZi4OEqLWz5mzXZWr+akq6d7ryvcvs1isFFRDH19+y3DYk89pb9+YGgof8zDhYGBNAADB7JsUOPGJol77dr0muxx9SrXi2bMMHk2RmJiWIy2Xj1K1j/5hJ5gx462Pe6ICK5bTZjA13Fx/HeVKvSizpyh51enjkmc0bAhrw9QHWneuuWFF5ib5S3BjzXKYCkUmZjdu9kiwlaI6L+MJ8QWW7fSm4iPN227d49GsEsXehn79wMrV9ID0luhfft2Gj1j6aXYWK4fTZ7M/Ks1ayhMyZ+fBqdbNyr4bPHwIRV6Awda1hkU4TpWuXL01Nq0YdPFL790HCL98UdW3ahenWtSlSvT4OzfD/z5J4UzhQvT4N65wzWt4cPtny9/fhqwQ4ec35f0xmDgQ0Z6GSxV6UKhSCOPYzgwOJhiAnfr2AUGslfUvn30DMzFCzVrcgK3d5xRcecI63Dgp58yvPjqo77ojRoxxNipEz9Lp07A119TWWheJSQxka1SGjfmmtfvv9PDqlCBxvbWLXo8K1fqq5Rx6xaN0s8/8yGncGHmjpmX0bpyhdtatWL1kmbNnN9nY1jQ3WodniIsjPcvvRLIlYelUKSRx9FgWYstUlK4xtKvn/NjBw1iw8KKFTm51aypr7J5RAQVaM7EFiImgzV6NDB0KMOXkydb7lesGEUdP/1EkUTTppalpUS4PpcvH+XvS5fSgJw8yTWoS5conDh/Xr+hGDqU5/vxR4YFd++2NFYHDzLEN2QIjePMmfpELc2aZY51rPQMBwIARCTDfurVqye24DAUiqzH9esiRYuKJCfrP2b27NnSt2/fdBtTehMfL1K8uMj58/zcCxeKVKki0rixyD//OD/+1CmR4GCe47PPRPr00XfdrVtFXnzR/vsbN4r07Sty9qxI2bIiBoPInj0iTzzB7+iPP0Ti4uwfv2CBSIcOpteffSby9NMiHTuKFC4sUro0z6VpIvnyiQQF6Ru3CD9v27Yi2bKJ/PabSFJS6n2WLRPx9RVZt46v4+P5OjjY+fnv3xfJn18kMVH/mNKD1at5v2xhb54HECQ6bYgKCSoUaWDLFoZu9LS5+K9glJRXqsQaeJGRDJElJQGjRjk/XoSKuoIFKf3Olo3rMM4aUCYmch9zhaAIvbukJK6faBpVdQYDz2kUIsTEACNG8OfZZ23nT6WkUDRRrx7Xra5f5xhPnuR5Hj7k+XPn5md31k0Y4Lhu3mQrkezZWc9w0SL+ALyPM2dSdDF1KsOMzz7L91aupCKwYkXn1ylShGtpx47pW+NLL9IzaRhQa1gKRZrYtIkL8o8TRrGFprFixE8/0SC88gql4s6M94wZNCh//EEVXIUKNEbJyY6PmzyZa0/16/N1fDzzlnx8OGGHhHCyv3+f60zZsrGKRc+eTD42iiv69LGfL/f55zQqGzZwnFu2sBpFzpxUAt65w9JIzkJ0cXE0nEuWAG3bUuU3cSKl7ubrOwULUip/7Bj7aD31lOV9HjrU8XXMMa5jedNgpWfSMAAVElQoXCUpSWT9ev4uXFjk5k3Xjs/KIcHz5xnKS0gwbTMYRDZvFmnUSOSFFxwfv2uXSMmSrt8zg0GkRAmRq1dN21JSRI4eFQkIEClTRqR9e4b1ChYUOX6c4+zYkeHKhQv1hW1//10kRw6R8eN5vRw5RIYOFYmO1jfOpCQRf3+RUqVEevYUuXiRY2/SRGTWLMt9HzwQeeklkU6dRKKiLN87e5bXN7/Pzli2jOfyJm+8ITJ3ru337M3zcCEkqEQXCoWLREXxqT0wkE+TTzzBUNLjgFFsYR5S0zTmSe3fb18aDtDzefNNhsBc7ZV04wZ/lylj2pYtG8cxeDDl5SdO8LsoW5aVLN57j+M9c4Z195x5fnfvUgyRkkJRxahRLLk1eTIrTjhChKHSZ56hV7V6NX9XqMCk3/BwyuqNXL5M5WGtWvQCrROhp01jOSd7pZ9s8eKLrLOYkqL/GE+T3qILXSFBTdMKAZgBoCYAAfA2gPMAlgIoB+AqgNdEJDxdRqlQZCIKF6bCbMkShsDatqVcunZtx8edPOn5JFt7REYyLJWSwp+4OE6eaVlrS0hgCSN7/Zc0zTKkZY4IQ2k9ejAHyVWM+VfmobyHDyn3/vFHJgK3agX8+y/LFt29S9m8o6Ky5kREMNR4/z7Xlfr10yefBxjK++QT3vNffuHfg3Gcyck0nhMnmu79gQMMTX75pe2QX3w8q7t37swHgeLF2XAyMZHJ6cYEYmtKluS+p0+b1sEymvQ2WHo9rN8BbBKRqgCeBXAWwGgA20WkEoDtj14rFI8FdetynWPfPj5Vf/yx/X337eNk2rkzJ9L0Jj6eVRJq1aKAwNj6Y+HCtJ131Sp+1kqVXD/2zz/pJY0f7961rStcGAz01tq0oXHJlo0CjnXruO/8+fqN1bZtFAokJ/OhYvx4Ch6ccf48DU/PnqZ1qHbtLI3q3Ll8uDGucy5dyr+DWbPsr08tX86/r2++YQqAjw+/u8mTgZ07HY/Jm/J2kUzgYWmaVgBAUwD9OChJBJCoaVpnAM0f7TYXwE4AOjRCCkXWp2pVTmpVq9pvMbF2LZNRQ0PpWbz7LguhHj1aBtev18Xq1ek3vu+/p0Fdt45eT7VqFBukBX9/ht9c5cQJNijcv9/9IrmHDln2nfr2W5NHYyQykgnH48ZZli6yx61bLCq7YQMN1pEjDCmWKcPw3fXrliFII7dv8/rLl/NBZeHC1BXhAVbX+OYb7gcA//d/DPVt28aHCXv4+9Pwff01HxJatKCopE8fepOOaNqU4cj333f++T3NvXsMnebJk37X0BMSLA8gDMBsTdOeBXAEwAgAJUQkFABEJFTTtOK2DtY07V0A7wJAGVvfvkKRBalenZNZQADlyrZYvJhP7BUqsHrBzZvcfv16Rdy7V8iigKmnSEnhtS5e5JN9zZo0mPPnp62S/IULDLfZC0fZIyYG6NWLlR3c8cwAej5Hj5pq+K1ZQw8lKMjSixoxglL2Tz5xfL6kJHor//d/DAOWKMG1H6N6L2dOek7Llll6zlFRVEROnkyv7tw5yvrt8ccfVDXWrcv1qNOnmRj85JO293/wgAbp4EEaxXff5RgHD6anPHGi01uFpk3Zq8vYQysjSfekYcC5ShBAfQDJABo+ev07gLEAHlrtF+7sXEolqHjcuHJF5N13RYoUEfn8cyaDpodKMD5eZPJkqtO6dBE5cULk1i0mnh4+nPbzjxwp8unK2PkCAAAgAElEQVSnrh83YIDIm2+m7donTlDpJ0L1nK+vyMGDlvscOyaSO7fIRx85Ptfu3SLPPCPy8ssif/1FxeKlS6n327ZNxDhdJSby3pYsyc9y5YrzMd+7x2TlgwdFmjfnd2JLaWgwMNn69depbqxShUo7g4HvHzok0r27a2rBsmV5nzKatWup1LSHvXkeLqgE9RiskgCumr1+EcB6UHTx5KNtTwI47+xcymApHleuXOGkf+2aZw1WYqLI9OmUdbdrZ2mc7t8X2bIl7deIi9NfccGcJUtEKlYUiYxM2/WnTRN56y2RiAiRqlVFZsxIPb6aNXkP9u+3fY7bt3mO0qVFli5llYpixUQOHLC9f3IyZfF//MHP0KoVJfR6GTlSpHdvGqCRI1NL6u/cEfnhB5FKlURq1GD1i5AQGjk9BtERb71FY5zR/PknH87s4QmD5VR0ISK3AdzQNM3YS7UlgH8BrAXQ99G2vgDWuO/nKRT/bcqVYzjJU1HxlBSG+apVY+hx8WKuxRiTagGue7RqlfZrrVqlv+KCkStXuI6yZIll40J3MCoE+/YFmjen2tCcr7/mfY2ISN36IyWFIbyaNamg+/df1u7r3JnS9UaNbF9z3z6G1MaNo2Bkyxb7nY2tuXaNcvqtW9l1+KefKJwwGHieV1+lWvTffynKOHWK4czt2zl+W722XMFb/bFu3EjfKheA/koX7wNYqGlaTgCXAfQHFYbLNE0bAOA6gFfTZ4gKhcKIwcBF/DFjaJCmT+eifHriasWFpCSgd28Wnq1XL+3XDwzkOuHdu6nzvHbvZhX1MWO4j/l64sGDLJ9UoADVdTVqUJjRoQMNSffuqa915gzHffo087iWL3fd6Pfpw3W3ZcuoYrx1iwrGGTOYEjFwIP9dsKDlcf7+ztff9NC0KcUeGb2OFRLCNI90Ra8r5okfFRJ8vBg4UKRAAZFhw1iYNDbW2yPKHLgTEjQYWFi0Vi2R+vVFNm0yrXOkJ+fOuV5xYfRohidTUtJ+/agokVy5RJ58MnV1jMhIET8/rp0MGMDwnYhIWJjIO+/wmAULTPcpMVGkdWuRwYNT37uQEJ7D11fk55+5JpiSwuK3p07pG6vBIDJkCAvc7t4t8vffIq+8IlKoEENljorlnjrF9UdbRXFdxWDgZ7e1NpeetGjBAsX2sDfPQ1W6UGQG3nmHKrH169n6u3hxhm8U+hFhvcKGDXnvxo5liKxNm4x5ep42jYo4vRUXtm0D5s1jC3c9LUOcsWYNw3oBAamrY3z4IZ/oO3Zk+O2llzjeGjUorz57FnjjDd4nEXpb2bNTvWe8dxERrB9YqxZVlRcuUGWXKxfH37Mnw5rOSEhgyHLePHo4vXszteCVVxgq8/d37G36+zPUaU9x6gqa5p2wYKZQCXryR3lYjx9167JlQ926IhcusB3H445eD2vHDtbmq1qVQgFPeCyuEBdHYcLFi/r2v3OHXsK2bZ65fmQkhQ8tWqR+b+1aelcRERSD+PqKPPccW5wcP556//HjRWrXNglA4uMpdCheXKRfP/t/l0FBFF048mZDQ0WqV2ddyWzZ6GWdPKn/c8bEUEV67Zr+Y5wxZYpI//6eO58zDAaqNK1rIppjb56HJ1WCnvxxZLCy4k/ZsmUdf4sKmTyZRUC/+YaKqMuXvT0i7+PMYO3bx6KoFSqIzJ/vWq8tT7JwoUjLlgzztG8v8vHH9vdNSWG/p88+88y1DQbKucuVY1jPnLt3GfLatYuvu3Zln6rZs20b9cWLGdoLCeH7ixbR2LVv79ywGAw0WEFB/Dl/3vRecDDD3j4+Ik89xXPOmeP6Z501y7IPlzPKli2rY36qLsDFDJwPiwjwwOl+tnDFYGWa9iIcd9ZCy+jMvCzI66+zptvChQy5vPgisHEjS/woLDlyhPfqzBmG/956S395IU+zaxeVa7GxTGC9do1hJnv8+itr+337rWeuP3EiQ2lJSZZKPhGKId54wzSeqChe31a34717geHDGao8d47qQE1j4nHz5o7HkJzMz9SrF8OC9+5RrXj0KEOPx46xvt/XX7PiycSJ7lUT8fdn52K9XLt2zel8aTAwBH/8uKR/mA6sZvLmm8CpU/bH5Yn5MtMYLMV/k8KFgeBgynqHDQN8fdm6fMUKoEkTb48uc3DyJFVdhw9zPWXVKvdLGHmK8+dpLIzS9Hz5+P3ZIiiIk/WhQ54xsJs2cZ1p7VoWki1f3vTe/Pn8e/r0U5ZVypuXEvSmTdlSfsQI077BwSyJ9e233D84mDL1V1/Vt7527hwVgpMn87P7+PC7qV+f62SnTlG12KIF0wv++sv1dbsTJ1gBpV07145zRrZspurtvXu7fnx8PMt6AfxOs2dnxflevWyvs2XI+hWUwVJkAObla3r2pBy7Wze2mejUyXvj8jbnzlGOvXMnW1ksWmS7Jp03OHuWXsP69RQTXL9uu8VGZCQnsSlT0p4/BLDtRt++FFmEhFhWaL9+nUZq61ZK1Z98kl6pCO+jr6+lwXrvPcDPjwbriy/42pV2HRUq0OD17k2PJVcuRgeuXDF9bzVq8LOXL88HMVfx96c4yRNiC2uMwgt3DFZEBI1zfDxLe508SW+7QQPbHQcyymBlmjWsrEhWHXdm4NAhlrqxbmr3ODBx4nKpUGGP+PpSDOBoodobREdzTejZZ1kto3Ztlg+yxmBgGaGBAz133Vq1RCZN4uvPPuPapwjXnlq0EBk3jq8DA0V69eJCf7ly/FsKCbE834EDIt99R2GGO8ydy3Wu0aNF8uThWlVyMgUaYWHcJzKSsn9XqmAYiYqiUOPGDdeO0zvvHDkiUq2a6+MS4f1etYpClsqV+Rlnz7a//xdfiIwZ4/ic9saNrLiGpXi8eO45PqG2aQOEhTFk81/n+nVKnRcv7oAKFTbiyJHUyaPeJiGB8vA8ebj+ky8fPRRb61fz5nE9Jygo7dcVoadRp44pSTkw0FR89o8/2NPLz4+ND0NDuTYVHEwp+rZtqXtxNWpkv5KFPZKTec6cOXkf2rWjZ1mhAu+Dj49lNYeff2aPKr1VMMxZsoRhu/TyTJ59luHGu3e5nqWH5GSOa/x4evujRzMM+/TTttcIjYSEOF7j9Bh6LZsnfpSHpbAmJIS11D7+OONl2xnFrVtMni5ShF7DpEkLPV781hNERzOxtmhRKusccf48Je+uyLd//NF+7b6ffmKxWWNyeUoKk87DwnhMnjyUzDdpIrJihSnBtkiR1LUF08KuXUwj8PMTyZGDXpWPj31Ze7ly7itf69cXWb/e9eNcmXfateP9ckZcHOsP+vmJNGsmsnkzP/Ps2SKNGjlPHG/Zksc4wt64kRVl7VmRrDruzMb9+yLPP8+inYmJ3h6N5+nWjVXE79zh6/So1p5WwsOZw9SlC8Nrjr6H+HiROnWY66OXNWtYnPbevdTvbd3Ka5rnIZ05w/2HDqXBeO4521Xn7VWGOHWKhWcPHdI/RiMHDvA+5MvHvKrx4+3v6+7f65Ej/HzupCy4Mu9MmCAyfLj996Oi+LBQqhSl9Xv3Wr5//76+kGqVKvzOHOEJg6UqXSi8TpEiDOncu8eW57Gx3h6RZ1mxgqEjvWGZjObOHUq8GzQAypYF3n7bsdpv9GgKLPQ2c7x6lfXzlixJ3T/q6lXKoRctYgFbEYaK33iD4zp+nGGzwEDLwr5GrMUKYWGsaNG4MUOFtoQithChoKJ5c4pIWrRgkdwXXmDVDnudot1VRU6bxhCoj497x+vFXsWLBw8Y4vTzozp1/XqqAl94wXK/IkUocHGECFMQMkJ0oQyWIlOQJw87pRorjIeHe3tEjwfXrjG9oFs3NgtcsIATqT3Wr2en5Rkz9JWGSkgAXnuNRu755y3fi43lA8qoUTQwc+ey2eHgwZwk332X60kLF+q71qpVbKwZH2+SYleo4PiY5GRWuq9Th+MYOJDXjIlhjtX27ZTBt2nDnCxPMHIkr2lddT49qFePzTyNYw8NZYHdSpVoZPbt44NE7druX+PhQ95rZ4bNEyiDpcg05MjBp9lGjfhUbezQq0gfzp7lfX7/fSa/rlxJL8bPz/b+t25xkl2wgA8WevjkE4ohPvjAcrsIDVL58kz8LVeOXta4cUycjojgA8ykSalrCNqjfHl6EyEh9BJ9fe3ns8XFsW1I5crA1Km87okT9Oxy5OB9Wb6c//7uO77u2JGGLK1cvMjfrkjsLWmHfv14f5xFI3LmZB3K5cv5IFCjBvPrjh/nQ4ctibqrZJikHVBrWGkhq447s2MwiEycyM6p5855ezSeJzOsYQUFcd1o7lzTtiZNRFautL1/cjJl5d9+q/8ay5ZxET88PPV7o0ZRMFGwICurnz5tei82ViR7dpHXXtN/LSPTplG8YazDaM2DByLff0+Z9iuvsAyWHlJSuMbaujXX8NJCnTosV1a7NteIXAUoKJMm8fvIl4+iCHvriadPM1XgiSfY8fru3bSN3RYbNvC+OMPefAklusgYsuq4swqzZnFS9USL98yEtw3Wrl0sFrtqlWnb6dOsz2dPRPD991SP6RUJXLhAFaH5d5eSQlVcvXoUM3z0ke0J9NdfqdB78ED3RxIRkatXec1Tp9haY+FC03shIez8W7gwi906EwjYIimJYozu3d1vA3L4MJWFycn8/PXrizx86PiY6Gg+YCxYwHwnIEBq1KARKlZMRNNoTM05dIhjLVGCDwT167s3Xj1Mmyby9tvO91MGy8tk1XFnJdas4eTqqM9OVsObBmvdOt5P64rqI0ZwMrTFvn2c+PQmuMbGMunY+NQfHS0ydSqVZDVq0Ktat872sQ8e8P1OnfRdy4jBIPLyy6bEYiNnz3IyLVxY5IMP0t4tID6e1+nf3700jHfeEfm//zONedgwekgRESK3bzNBe+pUKvtat2bR3ty56SUZi0gDPSUwkH29ypQxFQE2GHh8q1Y87o8/WAk+NlYkb970S1D/6iuRr792vp8yWF4mq447q2H0CJYu9fZIPIO3DNaiRTQ8Bw9abo+NZe7VlSupj3nwgKHZNWv0X2fgQE6uN26wSkSxYiKdOzNPp149kR9+sH/sG2+wOrqrVc//+ovSd6Pnc/Agq7j7+jKMaUtO7y7R0UzDGDHCtSaaERE0xvv2sT3KDz/Q2ytenCHQIkUYln3nHTaRXL+eOV7WXi0Aad+eIdMHDziGv//mmCpXZmTCOm+qSRORLVvS/tlt0b+/yPTpzvfzhMFSlS4UmZ6mTSl7b9+esmVX2rUryNSpVAFu2wbUrGn53vLlrDxiXQtQhKq5V17hjx4WLAA2b6ZEvlYtVi8/eJCCiLffpmrPWL3CmoAASqyTkykU0MvVq8CXX1IOv307MGEC6/2NHMkqDXql7XrJm5dqyebNKcj45pvU+8TEsIDwuXMUt5w7R0VeVBRl/FWrsmBu48ZA//4UgISFUVqup57kvHmskrJ8OatSZMvGwsndutmWyhvl7a1apfnjpyIjRRfKYCmyBLVqsfJ069bMiRkzJmM67mZ1RDiBz5jBCcu88rkRf3/bRuT6deD+fRohZyQns6r5J59Qnff887ymsfTUn3+yUO2BA7a/t9BQVkSfO5d5UHrVawYDJ/xWrWgIkpMpT+/Zkwq/P/5gPtbkyfrOZ83Bg5Rtt21rub1wYRrmxo1paGrWtDROYWGUjhsNU7duLCDr72+74PMLL7CdTNeuVP898YSjUeXEqlWskF+iBL/ftm0d/39o2pQPLOlBSEjqsljphl5XzBM/KiSoSCu3b1NlNXiw9xobpgWDQWTmzIwJCRoMIp98wnWjmzdt7+NMbOGMhw8ZvjKutQwenFqQsGcPw172OhcbDCwh9NVXXNt6+WV9146NZQHcXLmoCFy3zjJEl5zM6+bI4d5nE+HajLEAr5HoaApQChcWKVSI13/xRVaMWLeOgg/rv82DB0XKl3e87pWUJNKjh0jHjrZLIUVHU5AC3JA2bUR279b/OSIjuY4VF6f/GL3kz29bCWqNvfkSqtKF4r9KiRIM/Zw7xyfxhARvj8g1Zs0Chg17HZs2jcZHH9F7+fdfICXFs9dJSWE7jV27+GMvl2naNOZWuVqx4dIltvIwVkqoWZMJtlOmWFafuHmT3s7cufaTeKdPZ1WLr75iRYsGDRxf++FDFhEuU4ZVRGbOZKHeDh0svYx9+/j3khZsFY7Nk4cNI8+fZ8WIEyeYbFy2LMdQvnzqsJy/P/POHPXLyp6duWjZsrElSFKS5ectX56fE+iMTZuYG6aX/PmZVH3okP5j9BARQS83o4o4K4OlyHIUKABs2MBwV/v2XBcwZ8sW+6V0vM2AAcDEiStQq9bfKFEC+PtvdsEtWJDhpWHDgNmzOQkaJyy9hIRwEk1MZKfnS5e4ZmVdDslIXByrSNiqbHHhAkOC5ojQ+HXtyuTuPHkY5nr5ZVbM+PNPS4ORkAB0787PZB1SM5KSQkM1fz6N5qFD9tevbt1iyPHppxkOK1eOYa433rC9/4oVHGtaCAtjiNMcTWNlDF9f/rtKFZZ1GjKEzSetefiQSdn9+zu/Xo4cwLJl/G5ee43hzQoVmGy8cyfXrICjbn0We2Wa0kJICL+PjArPK4OlyJI88QS7vVaqxLpv5gZqwwY+0WZW8udPQKlSZzBqFD9DcDA9kfHjOTnt2EGDU7AgxRDvvcfPc/gwyw7ZY8EC7te5M43F+vV8srZHQICpfqA1kydzkjVn82ZOyq1bU+gwfjw9jNGjOZFaixvef5+L8aNH2x+Djw8Na/XqNIiHDtn3sN56iwYyd25g0CB6JB99ZHtfg4Hj79bN/rX1oLc1xzPP0HB37mz0gkwsWMDSTnprSd6+ze9k3TpgzRp+73PmcC0sLTRrxgcOT5KhVS6g02BpmnZV07RTmqYd1zQt6NG2IpqmbdU0LfjR78LpO1SFwhIfH6rf2rdnPbwrV7i9Wzc+XWclChbkhPLhh/Q2zpzh0/3vv3MyDAykYq9IEfY5evttGpX9+03lgu7e5ecuXpwGxPHCPY3be+/Zfi8yMnWYp21bjmvwYBqnyEiGAX/9NfVkOm0aQ3KzZzt/+s6Xj7+Dg2lgS5a0vV+nThQ1zJ/P886ebb947OHDPFdaJ3k9BuvkSXrHS5dSLNKtG/uEATTCju6zOefO0QurW5f3/vx53ovx42mA00qTJhSRuOq5OyKjDZYrKsEWInLP7PVoANtFZIKmaaMfvR7l0dEpFE7QNEqLixdnTH/jRiqubt/mk7uz4qeZmbx5ORE2bmzaFh8PnD7NCfHoUa4NnTnDSeP6daq1+valEXO0rnD6NL2kDh1svx8R4biYqTyqBdi8OdV55hw4QJn53r2OPTxr7HlXIpSOL11KD6FfP+Czz6jAs8eKFQxHphVbIUHzcX35JdfgmjblPWvZkn+HHToA//xDDzQhgVEAexw9SqO0axebUl68SBUiQC+rTRuGVadMSVvorXBhroMdPepa2oAjMqpKu5G0yNo7A2j+6N9zAeyEMlgKLzFsGFCsGMMyK1YAXbrw93+tk/ETT7BArXmrjUuX2B23WDFOSF99xTWwkiX5tF6vHn/XqcN9AJPYwro9h5GICMcGb+pUegAHDlhuDw2l1zVrluuFVQMDU0+kBgNDiwcPMq1h6VJK162L6Zojwu8+rV52UhK9SHuFfg0Gfh8bN9KodO/OB6fu3bmu2ro1Q7rvvmvb0OzZw6K7p04xtDl7tsnbNJIvH0PcrVpxn19+SdtnMoYFPWWwQkKci2Q8id41LAGwRdO0I5qmvftoWwkRCQWAR78zabcfxeNCr14MF3XtSk8jq4UF3eHcORqrDz+kUXr/fYbiIiJMgo67dzkxVqjAtZFOnZgj5edHA2MLWyFBI0FB9HgCAizDjomJQI8enKA7dnT9s1h7WImJFFScOUNvJTKSPZwchQIBGmuAodO0cO8eBSv2lH0+Pnw4GD+eD0zJyabwYb9+DJ2uXm0pOJFHfbdefJHhv27d+MDx0UepjZWRggW5frhrFz1LgH/jFy64/pk8LbzIrCHBF0TklqZpxQFs1TTtnN4LPDJw7wJAmTJl3BiiQqGf1q0pNujUia0Xbtygium/yNGjDD2NH88JctUqUxjPx4frN9WqmVR0BgNw+TLXnJ58kj2ZPvmEyrS6dS29sYcPTecyGEyTdng41Wt//glUrGg5ng8+oAf35Zeuf5aEBHoa9erxdUwMjV/OnJzgc+WiEfziC+ee2/Ll9HLSqlxzFA40snEjW3XMn88HJOP4AYZ0q1engGbHDqr8xo2j5/b55/RE7Xm41hQuDGzdagwtjsHTT/OB4YsvXPtML77ItdCUFM80j8xog+Vy8i+AMQA+BnAewJOPtj0J4LyzY1XisCKjOHuWiZKvvOLtkaTGE7UEd+9mnbwVK0zbnn1W5OhR58c+/7ypNqDBwNb0q1YxcbdDB1bI1zSRpk1ZUdzXV+T8eSbDdu4s8v77qc85cyaL2zqrPG6PwEAWeBVhfbzGjVmB3JiE/NtvTA7WkyxetaqpXmJCgvuJw1u3irz0kv33Y2OZDLxhQ+r3DAaR6tVZv69NG1ZWr1+fNQTdKZorwlYk166JAGdkwADWZXSHqlX1/Z3ooWBB/S1S7M2X8GTisKZpeTVNy2/8N4DWAE4DWAug76Pd+gJY40E7qlCkiapVuUi9bRu9CE+orDILGzYwlLRokaVs21EYz8ipUxRntG/P15rGBNwuXSheWbeOYcIcOZgYHBLCfVq1osewYwePW7CAir2UFIbyRo9m+Mt4/b59ue6kF+P6VWgow1YNGjD0lz071YNjxzoPBQJMwo6O5tpRWnGmEJw4keuC7dqlfm/HDoYU33mHocKXXuK9adXKcfKwIyZNMoY5T2HjRn7Wa9dcP4+nwoJRUQzbFs5AfbieW1cCwF5N004AOARgvYhsAjABQCtN04IBtHr0WqHINPTqxYn3n3+4XuBJOa+3WLqUn+XvvykwMceZsg9wLrYAGJ4zGLhOkpjIiXnJEp57yhSuD/79NwviFijAMNNzz1GAYUx47tGD70+axHUbZxw6xETgJk34vf3yCyf2lBR+3q++Ys6dM1asoBF31yiY4ygkePEi0wp+/dVye0QEa/t17EhjFxDAh6a1ayne6NWLBswdvvmG63nAQfj6Mrl44kTXz+Mpg5XRScMAVC3BtJBVx/048frrDCe1b89wV0yMt0fkfkjw9GmRUqVETp5M/Z7BwBYVjmoCxsSwhcW1a46vc+cO242Eh4sUKMDaeGXKpG4xkpjI0F2fPqwn+MYbItWqsaZg/fqs8/f00+zr5KwZY5kyDD1OnWq5/ZdfWKdPbxjt2WdN/aFE0hYS/PxzkbFjU283GBjmM2+Tcvcu+4kVLcp6gPnypW5pkpAg0rYt75e7YUER07wTFMTvxlWuX2fLF1dao9hiyxbHIVNr7M2XUO1FFArSvTsFAhs3Mtm2VSuGvTIqjHHr1i0EBQXh8OHDOH78OCIiInDjxg1ERUWhSZMmyJs3L6pVq4bnnnsO9evXR6VKlZDNjntQvTqVYbbaZcTF0Zt0VBNw2TJWUXemfTKGFletYihr2DDWA7RuMfLxx0ChQqlDdTExVLUFBNC72rKFrT5mzbJ9vY0bKY5ZuJA19IxcuMDSSwcP6vOYLl1i/t0LL/D1gweUcbsbDr5713ZoceVKjveDD+hl/PQT23289hpDm2vXUiRiXRIrZ056gG3aMN9q0qS0eSfmAg9XePpp5sedPcu/KXfJcMEFkHk8rLT8lC1bVr+Z9yBQHlamJyaGXsK9e3yq/egjVi8PCUmf6xkMBtm+fbu89tprUqpUKSlatKi0adNGvvzyS1m5cqXs3LlTvvrqK+nQoYPs2bNHNmzYIBMnTpQePXpIuXLlpECBAtKyZUuZN2+exMfH677urVtszuiIRo246O+MoCCR2rXZubZ3b3pR1p7b3LlstGirSvcHH/AJvndvNmK8dcv+tTZs4ML9M89Ybk9Opjjk99+dj9fIxIki773Hf0dG8pyAiI+P/nOY07mzyMqVltsiI0VKlxZZuJCNFgsXFhk50lQN32Cg+MRRJfWHD0Xq1rXf4dkZnph3+vZN7c3qoWzZsmZz75cCfO/SXG0LPG4dh71lOJTByhp0704VmwgnlIkT2UX33DnPXSM6OlqmTp0qNWrUkOrVq8uUKVPk8uXLYrARd3EUErx7964sX75cXn75ZSlRooR8+eWXEqLDup49y26z9jhxghOtdesPW2zfTmORNy/bc9y4Yfl+UBAN0qlTto+Pj9cX8po1i2HAgQNFPv3U8r2ffqJK0ZXQWYMGDFPFxoq0aEEVXaVK7hus558X2bvXclvfviLlyvHzf/NN6rDfzp0Mi9oLty1cyNDg3btU6znqvmwPT8w7M2cyZJuWaw8cKPLnn+4da7VdGayMQBmsrMGiRVzDMmfmTMq3Dx1K27mTk5Nl4sSJUqRIEencubNs27bNppEyR+8a1r///itDhgyRQoUKydtvvy3hDpoOBQayRbw9hg5N3dfJHqtWcTLNnVtk40bL9+7epbEPCNB3LntMmSKSJ4/Ijz9ybXH5cpEzZ2hQz57lWpAr6zPXr/OYxESRLl3o3dWvzxb02bK5N8YKFUQuXOC/9+9nDyxNo/w/MtL2Mb17c83UHg0amNbYbtyg8fP3d21cnph3Ll7keqir61jm127XTuTvv9071mq7MlgZgTJYWYOICDaZs84RWrOGT8pbtrh33uDgYHnhhRekefPmEhwcrPs4V0UXDx8+lCFDhsjTTz8tW+wMdssWkZYtbR8fHU2xhbWnZI9ZsyhU6NnTcntSEj2X0aN1Dz0VBoPIt9/SGIwZQ4NSrBi/C19fNuhs1Ehk8mTXzvvbbyL9+/Pf8+eLXL3KcN2SJTQy7pA/P0OCzZvTsFSo4NgYhYUxvOlIYPLxx5ZCjuBgGo7Fi3H+F8UAACAASURBVPWPyxPzjsHA69prqqnn2s88I3LsmHvHWm1XBisjUAYr69Cpk8iCBam379rFiXLpUv3nMhgMMnXqVClatKj89ttvkuKi5MtdleDmzZuldOnSMnToUImOjrZ4LyBApFs328fNnMnPr5dmzeiVxMZabv/oIyr+3O30nJIiMnw4lXyhoSL//stJs3hxhivXrGGIrHlz11V0L77Ibr9G/P3p7YSGuu5hpaSYDF21aiLz5vEe1qvn+LP/+COTnR2xdi3XBs05eZL3wHz8jvDUvNOrFx9OXMH82oUL00i7c6zVdmWwMgIAsm7dOqchIIX3mTNHpGtX2++dOCHy1FP6nuoTEhLk1Vdflfr168vZs2fdGktaKl08ePBA3nzzTalevbrF2tbMmSYPw5qGDfWHbrZsYcv3GjUsty9cyKoOeqsaWJOYKPLmmyJNmpiEGgYDW8wXKMBw5b//Mqx3+bJr5w4N5XnMNSodOtBrcUXWnpRE41S9Or2HIkVovB48cB4+Nhi4XrZvn+NrPHhAz81axHLwIB+cdu60f+zu3bslPDzcY/Pd1Klck3MF47Wjo1m9w5WpTxksDx2fluvWrFlTPv74Y2W0MjkPHnBitHJM/sfly1S9ff21/f+EcXFx0r59e+natatLCj5rPFGaaeLEiVKhQgW5evWqiDBfacSI1PsdP07vRY9XFBLCiblgQS6oGzl2jGG7EyfcG2tsrEjHjlxHtM6De/ZZejEJCVzfcWUR38jUqcy3MxIdTaMQHq7PYMXF8RzlytG73LLFpJQUERkyRGTwYMfn2L5dpGZNfRP4s8+aSkdZn8PX17ZhDAgIkOLFi0tQUJDH5rszZ0T8/Fw7xnjtc+f4/8WdY21s91xpJoVjdu3ahb179+IDR/0OFF6ncGG2dd+40fb7fn7s3/T33+yqm5Ji+X5CQhJ69OiB/PnzY+nSpciVK1f6D9oBn376KUaMGIEWLVogNDTUbjuQadNYHshZSaPkZFZheO01VqqoXZvb799n5YhJk4BatVwf58OHzDsqUIClm/LksXx/2zZWf//1V1Yr19Po0Brr3ldbt7K0U6FCjo+LimIOVfnyzM1bsIAFalu1YpWL4sU5tpUrmQ/mCGOTRj15VfYqTbz0EntrdepkrGhBAgICMHz4cGzevBn13E2+skG1arwHN264fqxXcrCgv72Iwg5FihTB5s2bsWHDBixdutTbw1E4oHt3xy1HSpTghHX+PCfvhARuFxFUrHga4eEVMX/+fORwlJ2bgbz//vsYMGAA2rZti7Cw+FQGKyaGJZUGDHB+ri+/ZEJygQKciAoXptHu3ZsGq1cv18d35w4bPD77LKuZ27ptxYqxkeRPPwEzZ7peUun+fZZ1Mm/hYSwbtW2baZsIsH276ZgxY2iogoJYm3HdOlPCMcCk4WLF2CJkwgTHieZ37zJR2rqRpT0ctarv3Bn4+Wd+nsuXgQsXLmDIkCFYv349ahufIjyEprlfpkkZrCxMgQIFsGzZMrz//vu4ePGit4ejsEOXLsCmTezaa48CBTiBibBAbFQU4O8/A7duVcLixf+XaYyVkc8//xyNGzfGpk0HU9URXLKEtfmcTSzr17PKxLx5PKZoUd6HL76g0ZrgRpXQq1d57a5dgT/+sG+IkpNZKPf771lL0FXWrKFHZPTcUlJofDp1oqdsnIzXr2fPqY8/Zk3CkBD2DVuyxORNmhMWxqoZuXMDb73leAyzZ9OoO/PojLz4Iq9t7cUbeeMN9r1q2dKArl2H4rvvvkOdOnX0ndxFsprBUmtYHrzu5MmTpU6dOhIXF+eV8Sic06yZvmoPycmsmvDMMwlSoMArUq6c+2tW1nhiDcucmJgYyZNnm4wcecRie4MGzpVnV69SobZ3r8jhw5RuN2pE6XnZsq6pwIycOsV1sz/+cL7vuHEiL7/sfl279u2ZZ2dk/35T1YzZs6k4zJ6da3B583Kd7/p15+cdOpT720uONpKSwntma03KEVWrOpeEN2y4WgoUuC5hYZY3x5Pz3dGjHItejNceNMj11AN744Zaw/IOQ4YMQYUKFTBy5EhvD0Vhh+7d2eDPGT4+wJ9/CuLjVyA5eSHq1fPumpUjYmPzIDm5OWbMWI/IyEgAbCp4+7ZlqMyaxETWCPzkE4bDFi9mCDAsDPjtN67dFCvm2lgOHgRatqRX9v77jvc9fZpV2WfMcK+mXkQE28x36GDatnatqeZh27YM+SUn08O7dImfS09Dz02b6CHWrOl4vx07uPbmapt4R2FBAFi2bBnu3RuJt9/2Rbt2Gh59rR6nVi22dLlzx7XjvNUYVRksD6JpGmbMmIE1a9bg0KFD3h6OwgbdujFklJjofN9ly5YiV65xqFkzD7ZvB06eTP/xuUpSEjvXFi3qg2bNsmPUqFEA9IktRo2isGDkSBaIXbqUYdCrV9nOo25d18aydStDcbNmmbocOxp3v37swFu2rGvXMbJuHSd+81Do2rUcA8C+WMa+X1Onco3SFgcP0lifOUPjtmcPcPMmiyU7w98fePdd1w2uo1BcTEwMhg8fjsWLF+OXX55AvXo0wnFxrl1DDz4+NMx79rh2nAoJpoG0Hu/p606ePFk6dOiQwaNR6KVRI5FNmxzvEx8fLyVLlpTAwECpUkVkwgRKjh0VNdWLJ0OCgwYx56hKFZHAwEgpVaqU7Nt3QgoXdlzgd8UKyriNVRk6dqTsv04dysAdVIGyybJlDC3u2aNv/++/ZxJyWrJBunZl2M9IcDALAJsnHScmMkHWUSLyhg1sCVK5MnPQsmdnexBnYT5j/pc7XZZv3LDf4uOHH36QV1999X+vk5Mp2+/QgZ/H0/PdxIm2u0jbwnjtokXZhsYV7I0bKiToXQYMGIDjx4/jyJEj3h6KwgbO1IIAsHLlStSsWRMVKzbArVtcrF+wgB7a0aMZM05nTJ3Kp/RFi9gS5Kmn8mPw4MH47LMTaNqUjRZtcekSMGgQ240Y1W9FiwJPPglcuULvZ9AgthfR81Q/bRpbbWzZwqd1Z5w6xdDc9On6PJNZs1I3gYyJoerPvOXJ33/TuzIXeOTIQe/JnugjNpZeVdGi/HeOHCYxhKNuwwDFFt27O+/ybIvSpekZnj1ruT0uLg4///wzvv766/9t8/EB5szhvaIAxLPTdtOmjsOT1sTF0Xt1NVzsEfRaNk/8PC4elggTO/v165eBo1Ho5fJlekuOkmmbNm0qAQEB0rs3F+6NBAe77n1Y4wkPa8cOehPGWnB58ohERYncvHlTfHyCJCDAdqfKuDi2tjAXRCQmMtG2VCl+vrx5Rf76i835Chbk0/3q1TzWHIOBogk/Px6nh8REenEzZujbPy5OJGfO1J5IQAA9NHOaN9cnqLlyhYKBtm3pSTVvzrJKY8awHFPfvvSyoqLsnyMlhZ87LcWT+/VL3eJj9uzZ0q5dO5v7x8ZyrMBfaW6+aE5iIu+DniomACQ4mFVPXMXefAnlYXmf/v37Y/Xq1Xjw4IG3h6Kwws+PT7j24vZnz57FhQsXULlyZyxebNnSvGJF/fLl9OLSJYojFi0CKlSgR5SQwDyqO3dKIWfOMggLW2Dz2I8+Yv7RsGGmbTNn8ql59Wo2HixUiEmw27czJ61JE+D33+mB9elDTyY+nmKNRYuYcF2xor6xT5jAtSTz9SGR1B6Ukdu3gZIlU3ti1snCDx4AR45Q8GFNUhI9iE8/BWrUABo2BA4f5hhCQoB//mES7YQJXPerWZPjsdUo08jWrbxP9evr+9y2sLWONXXqVAwZMsTm/rlzc40OqINRo+zfM1fJkYNJ9fv26dv/xg0vrV9BiS7SDV9fX7Rt2xYBAQHeHorCBo7CgtOmTcPbb7+N1atzIHt2hgBPn87Y8dkjMpKquBEjWBkBYK5YgQKc1DdtAl5/PRzTp/8FsZrRFi/mRGuuyouI4ET+2mvsrmtdMaNECSbP7tjB8NXzzzPJt2BB5m19/nnqzrr2OHGCOVnmocDjx2ns7EXPQ0NpsMyJj+fn7NLFtG3jRqBFC1M+VlgYk5V79uRnGDmSE/7s2TznnDkUqxg/6717DAH+/jvDXXnyOA5XulLZwh7NmtFgGb+m8+fP4+bNm2jXrp3dY/LnB4B22LDBvfw4e7gSFvSa4ALKYKUrzZs3x4EDB7w9DIUNunenbDsmJrUkecWKFejTpw+MhUs6d2YVA2PlC2+RkkL1na8vPQ8jEREmpdyoUYC/f0WEhobi6tWr/9vn3Dm2ZQ8IME3SBgM9tYQEysutz2VNyZL0SgoXpuEaNYrraE8+ScXfhg321ZdGVeAPP5gmu3nzmPQ7bpx9TyU0lOc3Z+tWVs8wX2MyVrc4fZpjq1SJa3Bt2lD9FxQEfPstv2vr9az4eGDsWOCvv2jUoqP52x63btEre/11+/vowc+Pvy9f5u/9+/ejadOm8HFWRwsPsGULHzymTEnbGAAaTKPxvHCByd6OUAbrP0rDhg0RGBjo7WEorPjuO05KhQqZjJaRsLAwREZGwmCognv3OHmXLcsqDP7+XhsyAFaeiI6mjNo8b8bcK8qWDfDxyYbnnnsORx+pQ2Jj6U2MG2dZ1WHsWE6WTZqYJN+RkfZFBJGRQLt2DBtu2UKvZfduiijq1gXGj6dx6d+fHo+58Ro3DihVikYrMREYOpTVLXbupBdkD1sGyzocmJjI0kgdO3LfceN4f1aupIG1Pt6aH35gPpLRsYmKcmywZs2iR0pvx32sSyMFBgaiYcOGuo4tVYqlpyZMoBjIXUSAqlX5nZ45w4cOR2WoAGWw/rPUrFkTISEhCA8P9/ZQFGbUrs2wWuPGVMpVrmx679ixY6hTpw6iozW8/DJQvTpw8SJzlPr189qQsWABxxoQwMnq7l3Te7aMTN26df9nsIYNo0fyzjum9zdsYGiufHnLnCl7RXTDwhiCrFKF61Y5c5ree+opem979jDsV7s2jdGTT7KO4Z9/0hOYNo3eSfPmzHM6fJhrSo6wNliJifSmunUzbdu9m5NuiRIMT7ZowQlYD5cuMUz522+mbY48rJQU3jd3ivTawtxgHTx4EI0aNdJ9rJ8fDfXHH7NElTtoGgv7vvoq8MwzzG1r3NjxMSEh3kkaBpTBSleyZ8+OunXr4vDhw94eisKMV15hKGvVKoZ2zA3W0aNHUbduXTRoADzxBP/zBgdzArQXKktvDh0CPvyQC+7FijEkGBZmet9WGM9osObMAQ4cYLjLfL0lWzYann37LCd/W+e6fp3179q25X1zFLEqXZrra/v2cX2qalWKM2JjOcnXqsXzrFypTw5ubbCM35e5ZN+8uoUriNCYf/opUKaMabu5h3XggKU3t3kzQ5GuJlXbw1jxIiYmBsHBwS4XuK1enUZm4EBTcV9X6dGDaQzXr/MhwrwIsC2U6OI/jAoLZk66deOTf0yMZcuLY8eOoe6j2ejAAXpiFy96TpHlKjdvcqwzZ5rKBBUvbulh2fKK6tati0OHYvHJJ4Lly1k+yBxjNfAWLSxVj9be2rlzNFbvvUevyRWRwdNP01tp0YLqxF27aGwnTeIEuW2bpQLTFtYGyzocKGJZ3cIVVq3iJG3dGcgougBovKKiTO8ZxRaeompVnn/jxtOoWbOmW21r6tdnubHevVm1wx0++4zebmwsvWhHZImQoKZpPpqmHdM0bd2j136apgVqmhasadpSTdNyOjtHZiEqKgo9e/ZE8eLFUatWLQQFBaXbtSpVqoRr166l2/kV7vPaawzvmIf6Lly4gKpVq+LhQz5JNm7MySs01DPXDAgIwCeffIJly5Zh9OjRSLFXshuUmnfpwvUecw+iWDHKuA0Gvo6MTO0VFSz4FMLDp+O77+Lsht2MtQPNMTd+QUE0Nt99Rw/PVY4d40NB9uwM423cSAN4+DC9pM8/Z3hz0CCqEG0ZL3ODlZJC6b25wTp1it6is9CiNdHRNFRTpliGNwH7a1ghIQx7utNqxR7Gdazt2xNRUW9ugA2aNqXysXNn2yXE7t69izZt2sDX1xeNGjVCcHBwqnGsWcNzOG7xkgsPHzpPqk4vXPGwRgAwz8ueCOBXEakEIByAjq47mYMePXpgzZo1CAsLw6lTp9CiRQvcvHkzXa6VO3duxKVHETCFR3jnHctadrGxsciXLx8CA4F69TjZVqrEsGBa2b17N/r27Yt79+4hLi4OkyZNwtixY23uK8L1n8qVgdGjLd/Lnp0GypjiZ+1hiQCDBmnIleswuna1XTX17l0gMDC1Z2IMCe7YwTp8/v5s/+EOBw7Q2BcuzPBjt268j+XKcd3l0CGOoXx5huWeeooS+n/+MVWbMDdYe/bwyd6orgNM4UBX5eVjxzIc17x56vfsrWHNnEljZe2tppVmzYAzZ4ohj3V3Sxdp357rce3aWf69GgwGtGzZEjt27MC9e/dw6NAhvPDCC4gydx3B78pZDUigFEqVcr1vmafQdVlN00oD6ABgxqPXGoCXABjrXs8F0MX20ZmLpKQkbNu2DQlWGuXt7gaAnaAMVtYiPj4euXLlwsGDlEcDnjNYixcvtvhbiI2Nxbx582zuO2ECQ5H2KpmbhwWNBssYvpw2jfJuX9/v7P7tBQRwf+s5MjKS5+jVi/u4szYE0KMaM4ahplmzmJg7diw9RvN50s+PxiooiAbOaMyMxuvePVOel3U4EHBv/erMGY7pxx9tv2/LYCUn87vwZDjQSNOmwPnzJZDbkTRRJz178r63amXqJHzjxg1cvnwZyY9cWBFBQkKCm2vrT3tNcAHo97B+A/ApgEdBCBQF8FBEjE58CACblcs0TXtX07QgTdOCwsxXir1EtmzZkM3G40F6tTwXEWhpyS5UZCiapkFEcOAAs/8BzxismBjg3LnWAL6y2J7TOh4FTsJTpnCNxd4cZm6wIiNZlWHnTnokX31FYwPE2fxbB2yHAwGGkxYsYGJus2a6P97/SEnh9YcM4ecYNMhkcN97jwv6ffuawpnmlC/P3K4jR1g9o1AhHluuHMOiS5ZYJgvfukXj+uKL+scnwrGNGZM6IdlIVFRqQ75pE43os8/qv5ZennkGiIrKg5gYB6U1XGDgQLZ2adWK4pxcuXKlCj2LiJtzXmmvrV8BOgyWpmkdAdwVEfNcdFszsM1laRGZJiL1RaS+r6+vm8P0HD4+PhgyZMj/3O8cOXKgUKFCaG/sQ+BhYmNjPfLkpMgYcufOjdjYeAQGmjysihXdN1j37zNh1c8PyJnzZeTOvfV/7+XJk8eiyCnANZkBA6iis1e8FrBUCkZEcL2rRAnmQP34I9Vs0dFlbP7tXb/OtaTWrS23//QTt//2m3squAcPmAu1Zw89JlsK7UmTaFTHj3d8rooVKbWuUYNijeRkGpJWrSih37uXXlzbtiwtpJeFC+lBDRpk+30Rvv/EE5bbPS22MMfHB6hU6Q6uXPGc6zJyJO9fmzZA7twl0bZt2//9LeTKlQt+fn5o4GoTLwCZ3mABeAHAK5qmXQWwBAwF/gagkKZp2R/tUxrArXQZYTrw66+/Yvz48Wjbti369++PI0eOIH9aswDtEBMTk+bYtCLjyJcvH06dSkCRIqaFZXc8LKP6rFIlhmb27AE2b86PQ4emo2HDhihdujQWLlyI183KJdy7x0Xz335z3hDQOiQYFkaFV/Hi9FJ27xbExd1CXhsF8ZYs4XqS0bkT4TrZzJk0FK4KGAAKLOrXp8x62zb7vady5WJo788/2bbeEcb1q8qVmaQ7ahTXt4oXp5c0YgQQHg7s32/bY7Pm4UNK7P/80740PzKSa4TZs5u2xcfzGo4SnNNK9er3ERLi53xHF/juOyaFd+wIzJ0bgM8++wytW7fGkCFDsHfvXuRwxdL/D+8aLJeqrQNoDmDdo38HAOj16N9/ARji7PjHqVq7kSFDhsjPP/+cAaNReIJ+/frJW2/tlNdfN22LjBTJndtxTyUjp0+LvPWWSOHCIh9/bLsnla1q7YmJIs2aiYwapW+c33wj8vXX/PeLL7LHFyDy6qscw/nz58XPz8/msbVrs9q7CCvWv/OOyHPPiYSFsd37hQv6xmBk7lz2dlqyRP8x+/axYr6ja02fLtK/Pyu1lysncuKE6b3oaFaVHz1apEYNkdKlRT74QGT/fvvf09ChIu+953hcFy7wswwbxteb/7+98w6PourC+HtDDTUJCR1CEaRLF1SagHSQKkWKIHwgAgoizYqAWCgWFEEQBBSUoIiISBULIFXphBIgtNBBSEg73x9vxhR2k9nd2ewm3N/z7JNsm7mzm8yZ096zlsrkxn13sWDBQcmZ85Cp1zpyvouL499jixYid+86u7qk+14hISHOvtezau1jAIxUSh0Dc1rzXNhWpsURuRWN56lRowb++ivLf+FAgFf3+fIxZ2KPP/9k8r9pU/axHD/O0FxqYb2kDB/O/UyebO71KUOCfftSMeGbb+gh7d69GzVq1LjnfYcPU7aoYUNqCHbvzhlYGzawXD41aaaUOCKxlJJHHrFdhJEUw8Pas4ceT9Wqic+tX0/V9bffZsjwxReZ8xowgDmvUaNYgWj0z+3axV6lKVNSX9elS8mrAOPi2As3aJD5Y3OGrl0fQFRUUZw6Zbuq01l8fOg5+/qyAjCVLgqTlPD6kOB/iMhmEWmb8PsJEakrIg+ISFcR8bA0qPcRGRmJQ4cO/deIqvF+atasiVOnCiczWIDtsKAIw1oNGlAct1UrnvzHj09bjy0pn3zCkOGSJamrSCQlZUiwRYvkxQeGYofBW2+xMu7rr2lYIiNZ0h4fz2MwIuLXr9OI7NuX+v7PnnVMYskWgwbRcPXrZ7sx2zBYRnVg0tqlpNWB777LJujXXwcOHmS/V548NOKG8erTh8YqICD1NUVEJDdY27czn5XUWLqDXLmywc/vMBYtOmn5trNmZRj4+nV+5mbCp/bx/hyWxkl2796NihUr6qKLDESpUg8hMrIwKlaMSfZ4UoMVE8NKuoceoiDt0KFUuR4yJHXRVFts3Mhcww8/OCb9lLJKMOV7UxqsXLmo8/f110CzZsxVFSpEj8woFouKolHYvp05tHfesd3M++uvHEXStq15iSVbKAV8/DE9V1uejzFaJGU5e1wc5YjatWNRy9y5LI03qFyZhS6HDvF1hw7RoE2cmFhCb0+5JCIiuajt6tXpp+pQqdIVrF3rnhaYHDnYdH3oEA24M8otFDMOsJufTA+0wXIjOhyY8Th0KC9y5TqMfft2J3u8XDlevX/0EX+fN48hvz17GFZLmqQ3y/HjHFHx9dcs6XYEIyQocq/BioqKwq5du5IZrNKlqe0XFUUPy9+fs6GSenRGODAwkAUZq1cz7GbMAhMBZsygQsgXX9CTdLWBNGkRxk8/JX/u/HmuNzIy+fiRv/6iwS5ThvOrOnVKrgVooBSN8s6dlCxauZLH1aMHB1+OHctQYdKTd9KQYFgYB1jaK3+3mubNc2D//jRcQBfInZvf6caN9LgdhSHxC6ajAO5AGyw3snbtWjRs2NDTy9A4wLZtQM2aMZg3LzEle+UKT/affsoqtWXL+LNFi8Qw1ZUrju0nOjon2rVjGKtJE8fXGRQEnDrFEuzs2Wk4Nm/mcyEhIahTpw4KJbkUNgzWuXPMse3bl2hkb9+mITJULgICmOMqWZLVeGvX8jU9enAo4vbtPHarKFqUnl6/fsnDrufP09h06mQ7HHjjBg3duHH2tz1mDKckP/QQb5Mm0RtesYKf2VNP0dscN44GbffuRIP19ttUnk8vVYc+fSrg+vWiuHjxjtv24e/P0TCLF9PYO0J4OACccceyzGO2OsOK2/1UJRgaGipBQUESGRmZjivSuEqrViLz5l0RPz8/OXDgprzwAiv+OnRgBZ0twsJYobdqlbl9zJu3QIoX3yNDhji/zthY7nPKFJHChUU+/1zk8cf5XIMGDSQkRSnXr7/y9TVq8L1JiYoSKVRI5JtvRGrWFClRgtsqVozVfEePilSpItKvn8idO86vOSnHjolMnCiyfLnI4cMiMTEin34qUqkSqzLj40WyZ+d+f/st+XsrVxbZtk3krbdEeve2v4/ffuMx3Lxp/zXx8SK7drE6s2hREaW4/a5dRbJlExkwQKR5c2uO2QwBAf/IyJE/p/oaK853p06JlCwpMn+++fd89ZUI4EApaArsrRsOVAlqg+Wm/Y4aNUpGjx6djqvROMPt2yJXrvD3uDgap82bRYKDN0quXJEyapTImTMso86Z03bJ9OrVfC5fPp7g06JVq3+kcOGDEh3t2tpz5uTNx4c/33xT5NdfD0uRIkUkOsnGf/2VJeT9+9sv+X7tNZH27UUeeUQkVy6R9etFFi8WeeABlnl/+ilP7lZx9qzIuHHcZ5kybBuoXp37q1xZZMkSrqNQoeRrPnaMj924wWM6ZKcSPDZWpGpVkWXLzK8pPl4kf34a7OzZabyeeootA1Yee2o89dRRKVLkc4lPZYdWne8OH+bFzvLl5l7/7rsiwPtO708bLIveb/V+L1++LAEBAXLy5Mn0XZDGIWJiRJo0Efn4Y97/+mueOAsWFOnXL1QqV34s2YmjaFF6UymZOpW9UG3b8r179tjf56JFIkFBN+Spp4a6vP5KlUTy5BHx8xOpX1+kY0eR7NlvS6FCZ2XMGPZahYTQ4Kxbl/q2zp1jX1PhwiLjx/OEP2ECT9xjx7q81DT591+RHTtEPvpIJCCAV/8+PvRy6talpzN9usjgwSI9eoi8845It272txcZydc4amjKluWFR/bsIp06iXTpwouBBx8UefVVkX373Gu81qyJFV/fHbIulS/MyvPdnj38m/05dadORESGDxcBXnB6X1YYLJ3DcgMzZsxA586dUapUKU8vRZMKY8Yw/1OyJHM2zz9PpYawMGDevDIArmH58uX/vd6e4sX+/czp/P03q95697a9v+3bORdqxIiNyJnzX5fXX7gwpViulgAAIABJREFUUKMG+5hCQoBp004iZ87OmDgxG7JloxJ9ly7MWR06xNyN2KkOK1KEpds3blCCqE0byh/9+CMLLK5fd3m5qZI7NwsrunVjFeCtWyzIGDyY4rd16rDSb+lSrmnsWBatPPcc81hbtiSq1wMsRX/5ZcdV3P/9lzm8mBhg4ULq8jVowN/v3KEieuXK1CI8cMDSjwAA8NhjWRAf/xBee+1tehRupnp15vOefprfd2p4Qw5LGyyLOXHiBGbPno3x48d7eimaVFi8mAUEp08Dr7zCkvROndiv4+tLkeQ5c+ZgxIgRuJpwJrSnKRgaSoOVLRtlhHbtuvc1Z8+yNHvePKBYMWvO/kFBQMeOTJ4XLiwYOHAQcuX6EhUrBiEwkCfdP/6gEOqePSzuKFOGRuC772ickvLhhyzTb9yYJ+X166nd1749S8LTg4IFaSBq1mR14OLFLHn/3/+4hrg44LXX+Hm/+y4HIO7dSwNWqhQLOJ54go3E8+bxIsFeY3JK4uNZPPPIIzRMSfuxHn6YWou8mGFFZcuWyUvorSBPHuChh7Li7NliCAkJsWajafDoo+wB7NSJfyf2oMEKT5c12cWsK2bFLbOHBKOioqRWrVrywQcfeGQ9GnMcO8b8RK5cDKV160YJoEqVRLZvT/7a4cOHS58+fUSEob8XX7x3e2FhDBONGCEyadK9z9+5I1K7tsjbb/O+LWkmZxg2TGTmTP4+b948efDBXlKmTLy88opI+fL3hi/j4xnSmjZN5IknGE589FEWP2zfzgS8LYmliAg+fvCgy0s2xYoVDAv6+ooUKJBYNLFkiUibNiyk2LHj3vfFx4ucPi3y00/Mt/TpwyISX19KO7Vpw+KKRYsYCktZD3X5MnOYhQol5sbWrrVfdBEXx5zliBEMF1epws/y8GHXjn/0aJGBA89IUFCQHD9+/J7n3XW+W75cpEgR+3nBIkVEgGJOb9/euqFzWOlDyv0OHz5cOnbsmGrCVGOOoUN5YjpwwPptx8by5Ld6NU+OX39N3bpcue7VW7t165aUKlVK1qxZIyEhzFPZY906kYcfTv5YfLxI9+4ivXol5j6sMlhvvcV809mzZyUwMFC6dr0kdeuyEnDFChrYlBWBSblzh7mL4cN5ovbxoebcvHksNEnKjBk0cunxp333LteSJ49I374inTtzv089JfL00yItWzq2vdhYkdBQke++42f21FMs7DByU506sehk+nQWcjRokPje1AxWUuLiWJU4fDhP7NWqcV9Hjji2VhFWmzZtKjJjxgypU6eO3E3xR+nO890XX7DoJOXFTnQ084lAFqe3rQ2WRe+3Yr8hISFSqlQpuXr1qkfWktmYPl0kSxYWFLz+Okuv3cmGDfQ2bLF27VopXry4/PLLealQwf427t7lei9cSHxs8mQKyyYtB7fKYM2eLdK/f6w0bdpURo9+Q7JlY8FA/vz06CZNSt1giVCct149lu0fOEBj1a0bPZzKlelR/vwzq/IqVhT5/nuXl50m586x6OHTT/m9P/wwKyD9/Chya6YS0wx371IoeOlSFpg89lhioUe1aizu6NdP5KGHRI4fNyd+LMLXbdlCwdzChfn+yZPNiwpfu0ZjHRUVLx06dJARI0Yke97d57uZM0XKlUv+d3zqFC8gXdm3NlgWvd/V/Ro9V9tTxpM0TrN8uUitWjxxtG/Pk+W5c+7b36RJIqNG2X9+2rRpUr58dcmRIz5VI9C1a2Jvy/ff85/87Nnkr7HKYC1fHifFiv0lHTt2lLCwWKlWTWTOnOQnmtTYvJnewOTJ956MY2MZJpw4kYY8Tx5+H+XK8STvTk9r1ix6pAbh4QwNFi6c2GvmDj78kIby6lX2Zi1cyO+zQAFWLebOzYuPfv1E3n+fhjw8PPXPIjaWn/NzzzHUWKMGQ8PHjqW+lurVqTx/8eIVKVmylHz77bf/PZce57s33+T/nnH9/ccfxkQAzxosJwRlNEnZv38/WrZsiSlTpjg5EE1jiwIFWDkWG8sE+AMP8L672LqVww/tMXLkSERERGD69Iv4++8cqFnzXnVbEVbbrVrFirdnn6UUTtGi1q83Li4O8+e/g1u32uOrr75CzpxZ8Pff5t4rwplb77wDfPnlvYMcAUo21a3L26uvskpw40ZO3m3blgUdTzzB4odmzRLH2FtBSAgLRQyKFWMhyIoV9sfaW8GqVUDFilSD8Pdn4Ufhwjz2X35hkcrBg6wK3b+fUlIHDlD1vnJloEqV5LfAQH6OjRrx9uGHFDn+5hsWdhQvzqrIjh2pRJItG//eY2JYtbplC/DDDwHo2XMzhg6ti7i4ODzlzqFcSXj1VR5v69bAunUsuPDoHCwDs5bNiltm9LAKFy4sX331lUf2n5nZt49FEEafyOXL7ttXfDyvolN6Qve+Ll5KljwmwcED5ZwNd+/UKeZA8uRhkn/JEtvbcdXDioqKkh49ekj9+n2kbFmTcaoEbt1iDqdmTRFn2wTj45mb+fBDFjLkzUvP45VXmMeJiXFuuyIs8MiXL3kINT6en2vx4olKGFZz9y5zmENTtMeZyWFFRIhs2sQesv/9jx6pnx89qscfZ15rzhx6TDdu8D0xMQxD/+9/PN4cOVhEs2QJj3HhQpHWrdmDtnmzyN9//y1FixaVTZs2pdv5Lj6e/W9Nm9IrfOEFz3tY2mC5uN8wW52kGpeJiWFRhAhzAWkN3nOFo0eZaDbDwIHx0r79WilUqJAsTyER8NVXzAXly5d6U6srBuvvv/+WatWqSefOneX8+UjJl8/8e48eZV7KSoklEeaZNm5kBV716jxZd+zIHNuJE45ta+5chuGScvo0Q3WrV/MEahRhWMnSpQzffvRR8sfNFl2kJD6e4cKff2b4sF8/GvXcuRlebNWK1YALFzL0OnYsi0By56ZxLluWFz65clGNRUTkzJkzEhsbm67nu9hYfh9lyxpKF9pgZWiDpXE/167xatVWKbMVLFyYuoFJynvvsYz5zz//lHLlykmvXr3+K7QZOpRx/nLlWPRQvbrYlF9yxmDFxMTIlClTJDAwUL744guJj4+X+HgWCJgpSFm5kidCqyWWbHHhAkvHn36a3nG5crzoWLWKHl5qtGx5b1n98uX0COPjE4swpkyxds1NmnC7hpTTxYv0dgyDdfq0eQmj1IiLYwHHypXMHfboQQmpnDnplefOTcNZtCjPzr6+bEM4dSpxG+l93rl7l/9/DRqIAMrp7VhhsHTjsMbr8fMDpk7l3CnXhs/ZZts2oF49c6811C7q16+PPXv2wM/PD9WqVcPy5cuxcqXgn3+ACxc42XfJEuYlXGXHjh1o2LAh1q1bh507d6Jfv35QSkGp5JOHbREXx8booUOpcj54sOPqD45SqBCVExYtouL6smXMQ02fzhxfkyb8PvfsSf59Xr/ORufWrRMfE6HC+uuvc93GOJKPP+agRis4epS5qezZ+XkCVGgfNizxs50wwZrmYB8fNm+3b8/xLF99xSkAQ4bwWLNnB4KD2fDs70+VkoMHmU975BHmHgGTY6wtwljTzZsA8AHE/QIc9jFr2ay4aQ9L4yxxcWzynTvX+m1Xry6ydau51x44QI8hKevWrZN69eqJj0+EPPbYdjl8+IqULi3yzz+2t2HGw4qKipJFixZJ3bp1pVSpUvLJJ59InI266urVWdFmi8uX2VfVuLH5ykF3c+sWPa3nn2dzc8GC9MS+/JLhuPbtk79+1SpWq6X0Cn//nR5jaKjraxo1iuHMihVZAWkwerRIu3YUBA4MFLl+3bHtRkenHXqNjKQH9/rr/B6THmdYWGI/XHS0yJo1bHAHLsujj7L8PDzcsTU5S/HizCsDO+WVV5zbhr3zJXRIMH3QBit92b2bJzhDXd0Kbt1insBsn1dkJBPktgoLduzYIX369BE/Pz+pVGmddO/+j5w8efKeRnJ7BuvSpUuyZs0aGTdunBQqVEiaNWsm33//vcSmUkf/xBM8kaVk926R0qV5MnalCMLdnDjBXFfHjiJZszK/Ywj3Rkay6OCbb2y/95NPmJNLK8yYGpGRLBo5coSFNxERiUUdFy8yj1SgAJuAHWXVKjZkDx6cuiCyowDZZPVqNlX7+7N/7MMP0y4acpaYGIaeo6NFgECpUIGhcUfRBsui92e0/d7PDB3KE4BVbNrEvJMjBAenfmV/8eJFefbZZeLvf0iKFi0qgYGB0rJlSxk/fry8//778vTTT0u9evVk+vTpMnHiROnatauUKlVK8uXLJ02aNJGxY8fKAZMSH716iSxYIHLpUuJjCxbQI3BktIanuXWLhuOnn6iKXrcu8ze5c9OTOHLkXi/LqGLr0sX5vNySJdzvmjVsVN+xg9+vQdeuNKSOeldRUfR+1q6lYQkIYI4qZVGHMyQ970RFifz4I2Wo/P1FGjbk9IHz513fj8GZM+zXM/Z95gyPZc4c59ed4nHTBkvx9elD7dq1ZefOnfc8rlwMqgcHByMsLMylbTiDUgrp+flpgGvX2Cvz44/Jx6Y7y9tvM08xfbr59zRrBowaBbRqZf810dEUcj16FIiNPYedO3diz549uHHjBvbu3YuzZ8+iVatWyJUrFypVqoQ6deqgXLly8HFwvO3IkRRkzZ8f+Owz4IUXgA0b2LNUubJDm/Io33wDzJ/PPi+D+vWBWrUogrt2LfOBRu9X06Y85rt32ePUoUPqk4ft0agRBYsvXGAus2xZ9s89+yyfv3CBPVitWwOXL/N26VLi7/buR0WxDyswkLmoCxc4IXr8eObjXMHeeefuXa71m2/4//HQQ+zz6tyZeUVn2bYNGDGCebVSpUrh1KlTAMoC2AxgFIBvTG/L1rqVUrtExNR/s9c0DusTv8YM/v5U737+eeDPP10fX75tGwsEHMEovEjNYGXPTsP2009Av35F0b59e7Rv3x4AsGDBAmzevBkzmUF3iQIFqB6+eDFPvoULA3/9xZN5RiIkhCdWg19/5Yl/5kwga1YWJBw8SMP12WdA3748IbdowYKIwYM5aqVly9T3I8IRIoZxCQ7miI1Ro9jke/IkT/YLFya+5to1IG9eFmQEBSUaosDAxLEsxn3j+Xz5WCSydCm3/cQTHN9RsKD7PsMcOYB27XiLiko0XuPHs2ijWzcqsju6hqRNw0kdg337gObNl2HevGVo0ybt7bjqmADIHCFBT5FR153RiYtjGO/zz13bjtGQevq0Y++bNo1NnmmxYAF7hlJilTSTCKcIBwQwZDNlyr3ivRmBO3eofxgRkfhYs2apf7937jDcNnIk81h58zK3OGVKYqHCzZsMlTVrRj2/YsX4mly5GParVYtFKb168T7A5ufly9mse+AA81jO5gBv3WKZ/u+/O/d+ezh63rlzh8K/PXrwc27alHnDpJ93akyfzuZnW2zbxv+hzZvT3o69dcPKHBaAnAD+AvA3gAMA3kx4vDSA7QBCASwDkD2tbWmDpbGKXbtcL8A4downMUf54QdziuERETxBpCzosMpgxcaySdfHhyflSpXuPfFnBL7/npWMBlu30oA4YnzPnBHp3ZtN2wEB/CyGD2c+bNUqFqGcPp3YhJuSjRtFBg506TDSDVfOO3fuUMm/e3f+rTRrxlxU0hxoSkaOZNOwPTZupNFKq0/SCoNlJqByF8DjIvIQgOoAWiql6gF4B8AMESkH4BqAAa77exqNOWrW5DTdV15xfhvbtjFP4ij2Jg+nJCiIE4x//dXxfZghPJx9TH5+QNeuDAtGRCT2EmUUUoYD33orcRq0WYoX55Tkzp3Z5zV/PgdQrlkD9OjB7X3zDacW28o+NGkCzJnj+rHYYuVKhjK9AV9fahd+/TVw7hxDqevXM3fXogXDy1euJH9PWjqCTZoAn39OjcmDB927/jQNVoIRNOZ5Z0u4CYDHARjzwxcCeNItK9R4nGvXGIP/1/Wp7pYyaRKLC2xN+DXD1q3mG4aTUqYMcOYMRUrTol07iqq6g+BgNt/mywcMGsQcjiMneW8gOpo5o44deX/3bk4QTk2I2B4TJ/JzOHMG2LSJhipPHhY7DBnCi4x27YASJYD+/ZlfSnlydgf+/pyYHBXl/n05Qq5cNPDLltF4Pfssi17KlGEucP584OpVGqwSJVLfVvv2wLRpNHonTvCxAwco5mslplLWSqksSqm9ACIArANwHMB1ETGWEw477ddKqUFKqZ1KqZ2XUmvJ13gt4eFUbK5Rg0lpb8HfH5g82XkFjK1bnfOwsmencoOZz6JdO56Q3VVTVLAgvaqMyoYNHHNfLOHsMWkSMHo0kDOn+W3s3s0CnFq1gH/+4UXMRx/x7xUAPvmEBnH2bJ5MN22ih75kCVXSDUX63383dxHiKA0bskBk1izrt20VuXPTS//2Wxqv/v1ZMFS6ND/fbdt44ZoavXqxwKN5c25j/Hjgu+8sXqjZ2CFDjfADsAlAAwDHkjxeAsC+tN6vc1gZk507meupWZOaYuvXe3pFicTFUQPO0QKM27eZfE85Jt0sTzzB/pe0iI9nPmbfvsTHzOSwhg2j6oM9FYuk2/f1Ffn337TX4o0MGEBxWBF+RoUK2c8z2WPNGpEHHqCAcaNG/E5/+405zt9+4zbtFT4kFe6tUYN5nSefpOaio8K9qXHwIHvjrGh6T8/zzvXr7E8zRJ3btKH25rVr9t/z9tsshHnnHRa9GNhbN9ylJSgi18Hi+3oA/JRSRll8cQDnXLaeGq8kMpIhgVOngBkzWAZudvaSu/Hx4ZXrhAkMX5hl507OLLpyxTkPxWweSynG9leupBdo3ERUsvspb1OnsteoXTuGW2y0L/63/bT0BL2V2Fh+Lp068f7kycCLLzJU5QgtWwJHjrAHbfduhkp//pn3hwzhHKqePW17CDlyJGob7t7N7XTuTE3DevXYozVsGMO6roTEK1bkcb79tvPb8AS3b7NM//vvGWnp1YteU3Aw/zYXLeLcLIOXX+Zn36wZc6qrV1PP0jLSsmgAggD4JfzuC+A3AG0BfAuge8LjswE8l9a2tIeVMVm7ltVEY8aw8urmzbRHr6c3gwdzqqtZpk7lyBI/P456cJSZM83v7+mnWY+rlHGLFyAuyX37NwYTebM30Lp2bfvPeTMbNtBrFxE5fJiVZq7Murpzh97m3r30UP39KU/VuDG1Czt1ckwRIy6OkkpTp1LNPU8ebuvtt1l1aEPaMVXOnWMFo7NzyAzS87yzfTv/vlJy44bI4sWMAuTLx5+LF1OFPjCQUk7lylElZOPG1NcNiz2sIgA2KaX+AbADwDoR+RHAGAAjlVLHABQAMM8yK6rxKooUYVPqsGG8ooqJYZOlNzF5MrB8Oa+SzfDnn6zei4x0zDMzMOthAaygypcPuHiR3tP8+QvRt2//VD2sf/9lErtwYeZf9uxhrsUWGTWPFRLCSk+AnsewYWzQdRZfX6qbR0bSqwoLY4P51q3c144dVHk3i48Pm4rHjOG05fPn2QR87hzQvTv/LwxV+osX095ekSJcjyuVremNvQrBfPnoba1cCZw+zfzXsmVA797Aww+zcCN3blawfv+9hQsya9msuGkPK+PTt6/1s4isYu5cNhSndeUbG8v5Q40aMc+RP7/jV8tHj1JPzSydOrGRWMRcDmv4cArCmhFN7dtXZP5882vxBuLi2Ox85AjnQwUEpJ4XMcvAgffq9Z0+ze1XqUKvdeDAxOZiVzh5MlG418+Pyvkvv0zP0Z6Y8s2bIoULp52bTI30OO/s2iWyZYvIBx/QO717N+2+uKtX2fP2zDP83wCY8zKwt27oeVgad/HSS6zAunvX0yu5l/796Z0sXJj662bN4us6d2YZrr+/eW/JoFQpXmmb/RwcLW//4ANWu1WvnvZrM6KHtXUrZaXKlwfeeYe5Jj8/17dbu/a9+b4SJegJRETQQwoJAapVo1TR7787X8FZqhTL1VesYA7x44+ZExs3jnnFtm35v3LkSOI+8ualluDo0e6rHLWCc+eAsWPZIlCsGPNvS5em/p733gPefZe/DxzInq6pU61dl9doCWoyBlWqsER3yRIaCG/CKMBo2xZ48kkaIlv4+1PMdMsWGpK4OA5cfPBB8/vKlg0oWZKl7RUqpP361q1ZBBAdbX4fZilYkOGqjITRLHzmDEupjx61Zrt16tDYp+Sxx2goPvmExSx58rC0fcAAFnkMH84wn6+vc/vNmhV49FHeJk5kMc+GDWwYfucdPt+iBW9dulAjce3atLUPPUWLFvxs/P1ZYHH6ND+f1Jgyxf3r0h6WxmFeegl4/333TP91ldq1aaxefdX+a3bsYP/Vxo08ec2dSyPnKA88YN4zK1iQlWLuUL3IaFWCIsx3dO7MK/IBA1iJZgVVqjB3Zauib8gQ5leio/k9FCnCKcJTpzL/GRzM3qEzZ1xfR4EC9ODmzeP2Vq/mBdFnn7G3CQD69WMu1dIqOovIlo2N17t20bOaN887mtK1wdI4zOOPs7HTqhHlVjN5Mq/a9+61/fy2bTyhFCrEcEeuXM4VkThSeAG4T/Uio4UEt2zhuI3AQHrqo0ZZt+1s2aiebqv4Ril64OfP07MZMoTGpEULGpQ//gDu3GEYtmtX4LffrAnbKcVRLyNH0quKiKAXmCUL91OwIPDUU1SWCA93fX9W0bcvv6eOHem5egPaYGkcRqlEL8sbKVCAigm2FDAiIykZc+ECe0VcwVGD1bYtDZbVuYuMZrB++IHh22nTWGVnKFVYha08lkHOnMw5ff89+9t69kyUDypXjqG6sDCgcWPmYWrUoCGJjLRufb6+NJIhIfwctm+nAf3lFxrLpMbNyv06SvXqDF9Om+a5NaREGyyNU3TtChw/bv/E4GkGDOCJ6MsveT8yErh5kyEOQ5A2vQ1W1ao0oOfOWVBdkIS0QoJXr/Jk+Omn9GaME5EnEGEBhFIMM0VH09PJl8+6fdSpw7CvPYoVY5jrhx/o5bzxRvLn8+blxc7BgwxZrljBcOG4cczlGOzYwZYFZ6lXj7dvv6V24tKlLI//4gsgIIAXXQULUsdz2jRg//70LdRQimvzptlq2mBpnCJbNhYReKuXZRRgjBsHXL/Oq9kRIxgOrFOH4Z+KFV3bh6MGSymGBffuTUNJ1EGCguhh2TuZzZrFxP/vv1PXcP9+4JFHLF2CafbtYx9fTAy9nVOn6GFVqWLdPlLzsAwaNKChunSJhnPjxntf4+NDY/Hjj/QAo6LocXXpwgueYsVYYLF8+b3vNcuUKTRGxgVHlizst3vlFYYkw8PvFe4F5qWbcK/XYbb+3Yqb7sPKXNy8aU3nvjsZNIiqB4cPi5QsyZ6ZESNEsmd3XRMxJoYDAR3RI6Tu3QXLBjga5M1L3TdbxMeLfPUVlSQ6dRKpU8cxxQcree01fv5Kibz4ouP9b2aIjaUqxdWrqb8uPp4DMBs0oFammTliN2+KzJolUqGCSLVqnLcVGCjy11/OrfXGDa41KEikWzeRceP4Gd26ZXu9R4+KAEOlbVt+53XqcOjkli0i0dHOrSG9sHe+hJUDHK28aYOV+Xj5ZZ6AvJXLl9kcvGcPGzaDgtiw+thj1my/fHmR/fvNvz4yUqRIkWvSp09faxaQQJkyIqGh9z5+6ZJI164iFStSCLZkSf70FJUrU4g2LWPiKg0aiKxbl/brIiNF6tZlE3mbNuYNeWSkyNKllGry9RXJnVvkn3+cW+vBgxRifvhhShplyULpJ3sY5527d0U2bRIZO9a9wr1WYYXB0iFBjUsMH848UVqjBzxFgQIcCPj88wwFXr3KSrC33rJm+46GBXPmBCZP/h5KWbN/A1uFFz/+yAbZEiWYuztzhp/BY49Zu++0CA1lGO3IEX7+9evb75GzirTyWAY5czJcfOQIcOwYJZ0APpZaU3i9epSSCg/n8MMCBdgMbZboaIrEDhjA8GSBAsxf5cvH7RijUVIje3YWh7z9dnLh3j//5Gdcvjz/7l0V7vUmtMHSuESxYqy2mj3b0yuxz4ABPEHExLBCKy7OuhyOowYLgOXGCkhusG7e5DC+YcM4WXbaNB53t27AV19Zv++0yJsX2LyZRsCYdrtihXv3aSaPZVC8OKcRX77MnNSePVRt+Osv++/Zu5efd2go83KnTnF4ZGrcvcvy+WeeYQ/YW28xd7d7N3PBp0/zp7Ml5IUKseryyy+pVPHNN7xYmTGD+0uqSu+NPZRm0AZL4zKjRnmvXBPARPasWTwRTZvGK1qrmiCdMVjuwKgU3LyZSiQAR8A0apT4mixZPNP8WagQLxaWLaMg6pgx9PzciVkPy6BBA64rVy4a9vLl2f7gKlFR9HD69KHRmDqV3tPff7Pw58UXqZiycSNH5Myfb00loC3h3pdeoiHr0cNx4V5vQUszaVymalWegLxRrsmgTh16gh9/zIZIqyhXzrUqMavw9wcWLKBU1Jw5zil3uAulqLt39Ci9mI0bqRLiTsqWBW7d4sm4UKG0Xx8by4uarFnZAnHokPPl3JGR7KFavpweVbVqbAOZOhUoWtT2e2bPpue/YgUNXPv2zu3bHnnyAG3a8Aaw1+yXX9iPNnw4y/YN6ahHH6UmYlJiYzmpuXlza9flKNrD0ljC6NHeK9dkMGUKe2uCg63bpjd4WDt3MgwUEcER8d5krAyyZePPdesc02x0FqUcCwtmzUqP6tlnaeT27rVd6m6PO3dobAzv5cMPGXY+dIgl8M8/b99YGWTJwr6vMWMSm5ndRalSDGGGhNAznzUruXBvmzY8BkO4NzaW3uCoUZ79H9cGS2MJjz/OP/iff/b0Suxz+zZDPjNnWteAWaIEvYY7d6zZniPExFDQtXVrFjXUqWOdJp/VvPEG/zYqVUq/fTpisACGKydMoNHPnj3tPqfbt9lY+9RTNEaffMIiiCNHaOyee47zzByhVStua/58x97nCoZw78SJVN0IC2MU4u+/qbVZujR7GF9+mQUdTz/tHhGm01VdAAAePUlEQVRnM2iDpbEEQ67pvfc8vRL7bNjAK8cGDawTHM2Shf/Qx49bsz1HaNGChQF791Lw15vlmdq2TZ5PSw8czWMZVKxI4ypy7/f677/MxXXpQsPy+edUTAkNBdav57gRMyFIeyhFL+uNNzxX2RcQcK9wb4UKLNjZt49KJZUqeUY2ShssjWV06+bdck3r1zMG//bbvKq0Ck+FBWfPBn76iSfOjKYnmB4YHpYz3nSDBsBrr7Gq8cIFVjZ26sSq2AUL6NWeOMFc1cCBDKNZRa1arOjzBg0/pRhFOHCAhRvx8fQa/fy0wdJkcAy5Jm/4R0tJfDw9LFf1A23hyJgRKylfPrFEPqONGEkPSpSgsXJGAf3GDfZE3bjBKr4lS1gIERbGKQX9+7N3yl1MmsQc0oUL7tuHWbJlo3c8bx776IyL0oCA9F+LNlgaS3n2WVYfhYV5eiXJ2b+fVV8lS1q/bW8ovAgMZC4tPt4z+TRvxNHCi+vXWbxiaPZ9+y29rCpVgIYNOb/KbMPz11+zD85ZSpfm/t580/ltWIWvL9C7Nz/LnDk9uxavMVhKqQx3C7ay3CyTkC8fG3VnzvT0SpKzfr17vCvA8wbruefoXeXNyzBVqVLeXa2ZnqSVx7p6lerobdrwYmbFCk7WPXOGau4DBvDnzJm8EDNL27YMFy5b5vzaJ0xgafzhw8kfDw4O9vi5z5mbFXiNwTKrJeVNtzBvcyO8hBEjvE+uKTMbrAIFOD8pKIjVZc2bs3FUY9vDunKF4a1WrejJ/PgjK9/OnmVfUq9eyXuwihfn6I/evc0X1+TNm+hlnTzp3NoDAljiPm5c8sfDwsI8fu5z5mYF+s9aYznFijGs4i1yTdHRHK3RpIl7tl+8OMNJnqrqGj+eXkS2bDxJpiURdD9Rpw4NVkQEMHcux4WUKcMqwGeeoZEKCWH/VN689rfTsCHw6qsswrh929y+a9WisenRgy0IzvD885RS+u03596f2dAGS+MWvEmuads2luW6S3DVx4cnwWPH3LP9tPD1pYJHaCg/74YNPbMOb+PiReC775jTK1uWRTeDBlGe6NtvWdWaJ4/57Q0dSiPUv7/5ysMXXqAH/Oqrzh0DxZLZmG9rn5GR1Ay8X0jTYCmlSiilNimlDimlDiilRiQ8HqCUWqeUCk346Wb9ZU1Golo13jwhtpoSd4YDDcqV85zBAlhmXb48PVt3iOtmFC5cYANvkyZU1NiyhdqKs2YxrNelCxuEnUEpTm0+edJ8v6FSzJEtWkSVD2fo2ZMXIiEhyR+PjwdatmQ406pGeG/HjIcVC2CUiFQEUA/AUKVUJQBjAWwQkXIANiTc12j+46WXKNfk6X+m9DJYnq4U/Ocf4LPPPLsGT3DuHL35Ro3Y9Lt1Kz2bCxd4wdShAz8bKzDGkThShFGwIHO6/fo51yvn40MDOW5cosKECPOWx49TlcOZ0v2MSJoGS0TOi8juhN9vATgEoBiADgAWJrxsIYAn3bVITcakaVP+M61Z47k13LjB7nx3j4T3BoN1P3lW4eHABx9wtleVKsxTjR5NI7VoEY2UUYLtqERTWpQokViEceKEufc0bUq5o759navgbNaMYc05c3j/3Xcp/5Q7NyMZu3c7vs2MiEM5LKVUKQA1AGwHUEhEzgM0agAKWr04TcbGkGt6/33PreHXXznMzt39I95gsDI7p08D06fz4uOhh6h1N348FRgWLmQpeUqVcYAGa/du6+S4gMQijCefNF+E8eabLM6ZMcO5fb77LhuKw8OZgzMaeRs31gbrHpRSeQCEAHhBRG468L5BSqmdSqmdl3Qr/n1Ht27M7eza5Zn9b9rk/nAgoA2Wuzh5khc8Dz8M1KxJtf3XX6eRmj+fuTtbRiopAQEs+T961Nq1OVqEYVRxvvOOcx5ftWosxf/0U75/7162MDRq5B2KGOmBKYOllMoGGqslImLMCr2olCqS8HwRADajsyIyR0Rqi0jtICsFtzQZgmzZ2JflKS+rb19qvbmbokU5f+mm6Us5jT2OH+dJvU4dGqrQUHoW589TbLZFC8cHUTorhJsaRhHGiRPMMa1fTyOSGqVKsQCke3fn/lYmTmS7SHg4G5ONGVbe0kLibsxUCSoA8wAcEpHpSZ76AYAxCq8vgJXWL0+TGRg40HNyTdWru6+cPSlKUVPQk5WCGZnQUKBuXRYoPPII/1amTmVBxWef0ZMwZmo5g9V5LIOcOWlcX3+da5w7N+33dO3KcTzPPed4QVKJEizNf/VVluk/8QQfv1/yl2Y8rEcB9AbwuFJqb8KtNYCpAJorpUIBNE+4r9HcgyHX9MEHnl6Je9FhQcc4coSeU/XqzAkdOMCczKpV9FyaNrVOVd8dHtaFC0CfPvSWSpSg0ahXL+33ffstFc+NwZuOMnYsR3wUKsRhkfcTZqoEfxcRJSLVRKR6wu0nEbkiIk1FpFzCz6vpsWBNxmT4cCbGvUmuyWq0wUqbgwcZ1qpalV5GRARVyf/4g2G+MmUojXTrlrX7rVmTpe3OKk7YIjSUvV6TJnEumq8vR9ekVYRRvz5w6hSP/bnn0g4jpiR/fhpgTw1R9CRa6UKTLhQvziquzNwn5KkxI96MCJXyX38dqFyZIayrV5lzOXOGxqphQ871atGC6hSNGwNDhljbv5c3LxAcTC/OKho0YFHRhAlsVs6Rg2HNtIowihfnxduff7JvrE4d5nijoszv+9o1vn7DBtePIyOhDZYm3XjpJZ6gvEGuyR1oD4uIsOT81Vd5Qm7ThjqLn3/O0vSZMzmSPalA748/8uSfKxf7qXx8gNhYa9dldR7r7l2GA994g/JLjzxCQ3zihLkiowoVGKZs2JAh0Ace4M+0PKcrV6jg/t57HFt/Pynza4OlSTeqVWMoyBvkmtxB1aocHX4/IgLs2cO+qAcfZH9SVBRzNGFhHOpZv759FfkXX6Rhq1KFVYJffulakYUtrM5jjRvHkSTPPce/7VWrWISxYgV7rcxIMSnFnFZsLPU3V62ixNb8+YkG+8kn6Y0ZrF9PI9ezJ0ORS5dad0zejjZYmnTFW+Sa3IG/P72I+424OJ6wu3Th1f5XXyWWeteta66CrUULhtSqVGEI0R1Y6WH99BNnVc2bl3h8xs8SJdhv9fTT5pQwAgKAxYtZbfj55/z8liyhd7p4MSWdevZMzP8a5exK8TOeMIHeXs+emb8fSxssTbrSrBmvnH/+2dMr0VhFliw8iR47xlL02rWdL7N2p8GqXh04dMixXJEtzp1j1euSJfbHxDdqBLzyivlxJA0a0FN7+mn2nm3YQBmm2bPptVasyGne8fH8rFu2TNxP1apU6z90iGvLzGiDpUlXDLkmM/0qmoxD0aLW9AK502D5+jLc5qoQ7sCBwODBNDKp8fzzQI0aNG5mIgoTJtAgTZ2auN6ePXmRd/Agh0s+8ww90QceoHpMrVpsjp86lReCkZGuHZu3ow2WJt3p1Yvd/hpNSipVoqdgpe5fUqzIYw0bRu8pLQwljGPHzBVhZMnCEOBHHzFnFR5O4xoVxZ60Ro342RjhwJo1qUo/ZAgnJ1+4wNlfmRmL2vI0GvModf81PGrMkTcvG2JPnGDVpdXUrs2Bnq5ghOPM4OvLIZJ16zIk2bx56q8vXpyhwJ49WcTSpUvy55s3p8EC+H/UuzcNWc+ebBM4fdqxY8loaA9Lo9F4Fe4MC9ap4x6JptQwxpGYLcJo3563gQOThxJjYmhsH388+etLluSgyuHDaRQzM9pgaTQar8KdBssomzc7EsQqGjVijippEUZqea1332Uo0Zh/BVCmauNGSp2lxMeH0me1alm7bm9DGyyNRuNVuNNgZc/O7e/Z457tp8awYfSAjCKM6tXtS5XlzEmvbMKExM9CKXqI9zPaYGk0Gq/CnQYLcI8QrhmUYpn6sWNspPb3B/76y/7rK1Sgp9W9e+av/jOLNlgajcarePBB5nrcJeFlNBDHxKTvpN74eIb4Pv6YBqtgwdQNFsAy9qpVgZEj02eN3o42WBqNxqvImZODDq2eEBwTQ5HaWrXoYa1eTb3D9OTiRUpQVa1KtYxNm1J/veGV/fILEBKSPmv0ZrTB0mg0Xoc7woJZslCjcNUqTi/+8Ucqw7tKp05cb+vWwP/+x+q+jRvvfZ2PDzBlCr3Hpk25nt9/T3v7+fNT6mnIEI4luZ/RBkuj0Xgd7jBYPj7U/5s1i6NG1q5Nuy/KDAsXciZW7tw0LJ9/ThUKe+TPD4wZQ29r4UJz+6hblwoxvXpZr2KfkdAGS6PReB1Vqlg7u8qgeHGKyx4/zgq9atWc39bFixyV0qQJMHQodQXz5OHMt9Gj035/zpxAjx7m9/fSSzSKb77p/JozOtpgaTQar8NZD+vWrbSLNRo3ZjFDlSr2x53Y484delGtW7M4ZPduThnesQPYvJlGZdAgx9dtBh8femTz5qWd+8qsaIOl0Wi8jrJlqTzuaIPvggWcbPzLL6m/7pNPzEs0xcVRPf2ZZ4BixejhdO4MnD3LnFjz5sAff1BN3d3VfIUL8xh79wYuX3bvvrwRbbA0Go3XkTUrPZhDhxx737BhnGo9eDD7l1wZt7F/P3NNwcH0nKpWpWp6gwbAb78xPGfQtau5MKAVPPEEtQOfeSZzzpVLDW2wNBqNV1KlCrBvn+Pva92axqZsWeChh9j3ZFb9/fx5YPp0jgVp1Ypl5T//TGWMkSMp2jxzJr2zxYsdX5tVTJrEHNqHH3puDZ5AGyyNRvMf7mrWdQZXCi9y5QImT6Yo7PLlHIpoT/T29m0an5YtOd5k/3429oaFcc5UlSrJX587N2WTXnwRCA11bn2ukj07c2mTJnlGZspTaIOl0Wj+o1Ej4O+/Pb0KYkVpe8WKLFAYPhxo25Yhwxs36HGtWwf06cPKwa+/5ij6s2eB+fOpiJ4li/3tVq8OvPYaq/yio7m9S5dcW6ujlC1Lwdvu3YF//03ffXsKbbA0Gs1/NGtmvjfI3VjVi6UUDdPBg8xpFS8OBAUB48ZR9eLwYapedO9Oz8wszz/PIozx44G9e4EOHVxfq6P07Ak88ggN8f1AmgZLKTVfKRWhlNqf5LEApdQ6pVRowk9/9y5To9GkB71709vwhubUkiWBmzftK5qb5exZ4L33WM6+cyeVKYKC2DfVujUHRjqDUvTGli1jX9e+fZ4pgvjoI2DrVvaXZXbMeFgLAKScsTkWwAYRKQdgQ8J9jUaTwXnwQRqK9es9vRIahMqVnctj3bpFT7F5c1b3HT3KE/vJk3x8/35O7q1fH5g40bnc3apVwHPPAW+9BYwYwabh06c53v7zzx3fnrPkycOc2ogRNJyZmTQNlohsAXA1xcMdABiBg4UAnrR4XRqNxkP06cP+Im/AkbBgbCwr+nr25JTfkBA28Z47B8ydy/yc0SicLRswahQbf/fsoeLFhg2Ora15c0omjRlDj+3WLeCff4CrV9NfqLZ6dQr5du/OnFpmxdkcViEROQ8ACT8L2nuhUmqQUmqnUmrnpfTOSmo0God56ikqid+86emVpG2wRGh0XnyRualRo4CVK+k5Pf44Pcbs2e2/v2RJ4LvvgPff52DFXr2ACxfMrS1nTu7v2DH2YUVFcVtly/Kx9GbYMJbdT5iQ/vtOL9xedCEic0SktojUDgoKcvfuNBqNiwQGMt/jDeMs7BmsM2cSS867dAHy5mUJ+4EDVEPv149Nx507M0fVrRvw6afAkSO280zt2vG9JUowhPjpp+Z7t/LmpXdz4QJ7uEqXZmgwvfOARk5t6VJ6mpkRZw3WRaVUEQBI+Blh3ZI0Go2n6d0bWLTI06tINFgi9Pjmz6fYbPXq7JP67DPmbSZOBMqX53sKFaKX+Nln7JPavZsl7du3M4xXvDjw9NPcVlhY4r5y56YR3LyZBQz16zs24DEwEPDzo+dVuDCNVnoTGMjvrX9/855iRsJZg/UDgL4Jv/cFsNKa5Wg0Gm+gbVv2Y3nipJsUf38OXnzySYbvVq1i6OvcOQ42fOwxehapUaIE83ILFnCe1JYtzGetW8eG4jJlGA5csoTbrVwZ+PVXzp9q1Qp44QXHw6Nly3quAKJxY+oa9u7NKceZCTNl7V8D2ArgQaVUuFJqAICpAJorpUIBNE+4r9FoMgk5cjAvs2RJ+u9bhOrnw4fT2ACcQHz8OHNEnTpxfc6gFI3JwIEs379wgYMca9RgCLRqVaBCBfZYGWHGW7eogPHtt+bL1h94wDN5LIPXXgMiI1nOn5kwUyXYQ0SKiEg2ESkuIvNE5IqINBWRcgk/U1YRajSaDE6fPgwvpWdv0bVr9HB69AAKFGCJeO/ezAsVKGD9/pSiMXr+eWDFCiAiguHAsmWBL75gFeDOnWzOfeklCs/a8pwWLwauX0+870kPC6B48JIllJjavt1z67AarXSh0WhsUr8+S6RTm55rNfnz09MJDQVef50nfndMH7ZHlixAzZqs/lu9miM8PvuMObOyZelxVagANGxIz8wYf7J/P8OTxgh7T3tYAFXmZ8+m8b9xw7NrsQptsDQajU2UYnFCehZf+PhQ/y9pXio9DVZKsmUD6tWj/NLGjcxlLVpEpfRu3Vjk0LAhQ5SNG9MT27nTOwwWwPBpixYct5IZRpFog6XRaOxiSDXFxHhuDYbahTcUEOTIwebcI0f4uQQGss/r6lUOcYyISFSGP3HCO4zE9Ok0+F984emVuI42WBqNxi5lywLlygFr13puDf7+DBV6umIxJR06sNfr5k1OMD5yhGHBrl0ZQsyXj/O1PI2vL3uzxoxxfCCmt6ENlkajSRVvkGryZFgwNfLk4RDFFStYaRgVlagC7ynFC1tUrsz5YN27c40ZFW2wNC4zfDgwZw7DIprMR7du9LCuX+do+MuX038N3mqwAOa4OnTgZzNgAJuTR41i0cPx4/S8kjYoe4qBAylVNXq0p1fiPNpgaVymXTuqe5cuzXENH3xgXtZG493ExTG01bw5+5BefZUCr+mNNxssAx8fNuy++y6HRv70EysNR44Etm3z9OpYyDJnDqsbV2ZQqQdtsDSmiY+nEsDWrYyJv/MOxyvMnMnheHFxvBIfOTLjx8o1ZM0alnm3a8fquDNnEpt505OMYLAM2rRhQ3L79sAvv/BWuTKfi4+ncrynijH8/NhnNmgQEB7umTW4QlZPL0DjPURH84R06pTtW3g4E+DBwYm3SpWAli3ZjzJpEmVuZs/mJFZNxqdNG/ZhTZ7MUODt29TiS28qVmRoLTaWTbHeTFAQe7cGD2axSIkS1D986SWqyn/8MVU0unf3zPrq1+fsrF69WKqfJYtn1uEMXv7Va6zk1i0antOnbRuky5c5niCpQXr0Uc4XCg7mP56v773bXb2aemvTpvGfIC1tN43niI+nmsTVq+wVSuu7UooNvIYiedastv8G3E3u3LwIOnaMjbveTrt2nES8ZAnL3+vWpQbiokXA0KGMQrRsSY/HE4wZwzD+pEn8fvv2pRiwtxsvbbAyCSI0OPa8o1OnWB2U1BgFB1PktGRJ/l60qHNXr489xpCgO6RzMjs3b1IhvFs3lkI7igi9noiI1G+XLvHn5cusbCtcmBcaZcqY28/IkSy68GS1oBEWzAgGCwBmzWL4vHVr5gHnzmVua+xYXgC8+KLneqOyZKGcVM2a9P42bWJhSNmynlmPWbTByiDExjJ/lNIIGd7S6dMcaxAcnGiAgoPZhW/8HhjoHu8nf37rt5nZEeEV+KhRvNJOajiioxMNjC2jk/IGcKRGwYIMRxUsyFvJkkDt2on3CxZMbHR1hokTefMUhsHq0sVza3CE/PkT9QSvXqUSRng4/wevXqV6/IABvOBLb+7cYSHIZ59RzeTBB9mcrQ2WxiHu3mVS9MSJ5Ibp/HmebJJ6RzVqcOyCYaTy5vX06jVmCA/3w/ffT8HPPzOfcO0ac0WGAfr33+SGx7gFBbGJ1/jdMFK5c3v6iNKHKlWA5cs9vQrnCAgAjh5N9IgvXmRUonZtz6wnOpoe4OnTLAgJDeXFQPv2nlmPWbTB8jJu3gT++oshmyZNEo1TiRLOXxlrvIuLF/MhKiofsmZlKXTr1omGqGBB5jV8dP3uPVSpArzxhqdX4RpKMSSbJ49nvRk/P2DDBoYCx4/nBfLKlfzdm9EGy8sICuJ4bk3mpVat0+je/UsMHrwAc+eyemzcOODllz29Mu+mfHngyhV6KbqwxxqaNOEIly++APbt8/Rq0kYbLI3GAyjFcGD9+sCMGZln/IM7yZ4dOHlSGyurUQro39/TqzCHNlgajYfJn18XrpglTx5Pr0DjSXSkXKPRaDQZAm2wNBqNRpMh0AZLo9FoNBkCbbA0Go1GkyHQBkuj0Wg0GQJtsDQajUaTIXDJYCmlWiqljiiljimlxlq1KI1Go9FoUuK0wVJKZQEwC0ArAJUA9FBKVbJqYRqNRqPRJMUVD6sugGMickJEogEsBdDBmmVpNBqNRpMcV5QuigE4k+R+OICHU75IKTUIwCAAKFmypM0NBQcHQ2m9Fc19xsKFCz29BI0m3QgODnZ5G64YLFsWRu55QGQOgDkAULt27XueB4CwsDAXlqHRaDSa+wFXQoLhAEokuV8cwDnXlqPRaDQajW1cMVg7AJRTSpVWSmUH0B3AD9YsS6PRaDSa5DgdEhSRWKXU8wDWAsgCYL6IHLBsZRqNRqPRJMGl8SIi8hOAnyxai0aj0Wg0dtFKFxqNRqPJECgRm4V77tmZUpcAnLLxVCCAy+m2EO9CH/v9iT72+xN97PcSLCJBZjaQrgbL7iKU2ikitT29Dk+gj10f+/2GPnZ97M6iQ4IajUajyRBog6XRaDSaDIG3GKw5nl6AB9HHfn+ij/3+RB+7C3hFDkuj0Wg0mrTwFg9Lo9FoNJpU0QZLo9FoNBkCjxus+2lqsVKqhFJqk1LqkFLqgFJqRMLjAUqpdUqp0ISf/p5eqztQSmVRSu1RSv2YcL+0Ump7wnEvS9CkzJQopfyUUsuVUocTvv/699H3/mLC3/t+pdTXSqmcmfW7V0rNV0pFKKX2J3nM5vesyIcJ575/lFI1Pbdy17Fz7O8l/M3/o5T6Tinll+S5cQnHfkQp1cLMPjxqsO7DqcWxAEaJSEUA9QAMTTjesQA2iEg5ABsS7mdGRgA4lOT+OwBmJBz3NQADPLKq9OEDAD+LSAUAD4GfQ6b/3pVSxQAMB1BbRKqAuqPdkXm/+wUAWqZ4zN733ApAuYTbIACfptMa3cUC3Hvs6wBUEZFqAI4CGAcACee97gAqJ7znkwR7kCqe9rDuq6nFInJeRHYn/H4LPGkVA4/ZmOa3EMCTnlmh+1BKFQfQBsDnCfcVgMcBLE94SaY8bgBQSuUD0BDAPAAQkWgRuY774HtPICsAX6VUVgC5AJxHJv3uRWQLgKspHrb3PXcA8KWQbQD8lFJF0mel1mPr2EXkFxGJTbi7DRxDBfDYl4rIXRE5CeAYaA9SxdMGy9bU4mIeWku6opQqBaAGgO0AConIeYBGDUBBz63MbcwE8DKA+IT7BQBcT/LHnJm/+zIALgH4IiEk+rlSKjfug+9dRM4CeB/AadBQ3QCwC/fPdw/Y/57vt/NffwBrEn536tg9bbBMTS3ObCil8gAIAfCCiNz09HrcjVKqLYAIEdmV9GEbL82s331WADUBfCoiNQDcRiYM/9kiIV/TAUBpAEUB5AZDYSnJrN99atw3/wNKqQlgSmSJ8ZCNl6V57J42WPfd1GKlVDbQWC0RkRUJD180QgEJPyM8tT438SiA9kqpMDDs+zjocfklhImAzP3dhwMIF5HtCfeXgwYss3/vANAMwEkRuSQiMQBWAHgE9893D9j/nu+L859Sqi+AtgB6SWLjr1PH7mmDdV9NLU7I28wDcEhEpid56gcAfRN+7wtgZXqvzZ2IyDgRKS4ipcDveKOI9AKwCUCXhJdluuM2EJELAM4opR5MeKgpgIPI5N97AqcB1FNK5Ur4+zeO/b747hOw9z3/AKBPQrVgPQA3jNBhZkEp1RLAGADtReROkqd+ANBdKZVDKVUaLDz5K80NiohHbwBag9UjxwFM8PR63Hysj4Fu7z8A9ibcWoP5nA0AQhN+Bnh6rW78DBoD+DHh9zIJf6THAHwLIIen1+fG464OYGfCd/89AP/75XsH8CaAwwD2A1gEIEdm/e4BfA3m6mJAL2KAve8ZDIvNSjj37QMrKT1+DBYf+zEwV2Wc72Ynef2EhGM/AqCVmX1oaSaNRqPRZAg8HRLUaDQajcYU2mBpNBqNJkOgDZZGo9FoMgTaYGk0Go0mQ6ANlkaj0WgyBNpgaTQajSZDoA2WRqPRaDIE/wdtY4IkGaf2fQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig=plt.figure() #set up the figures\n", "fig.set_size_inches(7, 5)\n", "ax=fig.add_subplot(1,1,1)\n", "draw_pitch(ax) #overlay our different objects on the pitch\n", "plt.ylim(-2, 82)\n", "plt.xlim(-2, 122)\n", "#plt.plot(x_axis,y_axis,'ro')\n", "#plt.plot(x,y,'bo')\n", "#plt.axis('off')\n", "\n", "for i in range(len(ozil_pass)):\n", " # annotate draw an arrow from a current position to pass_end_location\n", " ax.annotate(\"\", xy = (ozil_pass.iloc[i]['pass_end_location'][0], ozil_pass.iloc[i]['pass_end_location'][1]), xycoords = 'data',\n", " xytext = (ozil_pass.iloc[i]['location'][0], ozil_pass.iloc[i]['location'][1]), textcoords = 'data',\n", " arrowprops=dict(arrowstyle=\"->\",connectionstyle=\"arc3\", color = \"blue\"),)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEyCAYAAACS3SWDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnX/MZuVZ578XjGVmdJthGKnsvLDQdeJuJbpDJixrN6YpNUIlTP9oDW5TxxYzMekqGjcCkmyziSY0GmvN1m4mpRY3pFixLsStWgQas3+AHSjSHxQ7SysMjIWJpZqdGZH12j+e8yyHZ86P+8d1n3Pf9/l+ksm87/Occ+77vOd9z+e5rvu67yOqCkIIIaR0zpm7A4QQQogFFBohhJAqoNAIIYRUAYVGCCGkCig0QgghVUChEUIIqQIKjRBCSBVQaIQQQqqAQiOEEFIF2+buQJsLLrhAL7nkkrm7QQghJCMef/zxk6r63WPbZSW0Sy65BA8++ODc3SCEEJIRu3fv/muX7ZhyJIQQUgUUGiGEkCqg0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFTgLTUQ+LiIviMiXWq/tFpH7ReRrzf/nN6+LiPyWiBwTkSdE5IoUnSeEEELW+ERonwBwzcZrtwB4QFX3AXig+R4ArgWwr/l3GMBH47pJCCGEDOMsNFX9cwB/u/HyQQB3Nl/fCeAdrdd/V1c8DGCXiFwU21lCCCGkj9gxtDeo6gkAaP6/sHl9L4BnW9sdb147CxE5LCJHReToyZMnI7tDCCFkqaQqCpGO17RrQ1U9oqoHVPXAnj17EnWHEEJI7cQK7ZvrVGLz/wvN68cBXNzabgvA85FtEUIIIb3ECu0+AIearw8BuLf1+k821Y5XAfj2OjVJCCGEpMD58TEi8kkAbwGwR0SOA/gAgNsBfEpEbgTwDIB3NZt/BsDbARwDcArAew37TAghhJyFs9BU9Sd63rq6Y1sF8P7QThFCCCG+cKUQQgghVUChEUIIqQIKjRBCSBVQaIQQQqqAQiOEEFIFFBohhJAqoNAIIYRUAYVGCCGkCig0QgghVeC8UgghhEzF6dOnz3ptx44dM/SElASFRgiZlC5ZWe1H6S0bCo0QkpRQgVm1RcktBwqNEGLOlBIbo90Xyq1uKDRCiAk5SayPzT5ScHVBoRFCgilBYkMweqsLCo0Q4k3pIuuCcisfCo0Q4kyNIuuCcisTCo0QMoq1yE6dOmVynJ07d5ocZwjKrRwoNEJILxYis5KX67FTSo5FJXlDoRFCziJWZCkl5ts2BbccKDRCyGsIldmcEhui3a/UKcq+nx1FNw0UGiEEQH0i62Ld1ynG3tqE/mwpQj8oNEJI0A03VGRWBSYxN/spo7YYGPH5QaERsmCmEFmqUn+r8atS5NaGlZfdUGiELBRf0fiIbI75ahY3+blSkjFQbq9CoRGyMFKJLKdJ17E3+RLFBqzOe8lSo9AIWRApZJYy0uvCVzIxcis1HblUqVFohCwEH/FYisy6CjJmntm6z7VHbUuVGoVGSOVYR1Aux5uylD9EcEuI2pYoNQqNkIqxjMrGjhUiMZf+pRZOzVHb0qRGoRFSKVPJLHXRSNd+rjdpH+HULLalQKERUhmWKcYYkaWsevSdgza12FzbIrZQaIRURA5RWc5z0KYSm29bKVlS2tFEaCLyCwB+GoAC+CKA9wK4CMDdAHYDeAzAe1T1ZYv2CCGvZe6obKpCESsR+YrNYpmtucW2BM6JPYCI7AXwcwAOqOrlAM4FcAOADwL4kKruA/AtADfGtkUIOZspZHbq1KnO/U6fPj0qwL59Q2gfzyXCdClkcZ2iUPIjdZZCtNAatgHYISLbAOwEcALAWwHc07x/J4B3GLVFCEHYTTZUZr7bW0psCJe2chLbVD+XpRKdclTV50Tk1wE8A+A0gM8CeBTAS6r6SrPZcQB7u/YXkcMADgPA1tZWbHcIqZ4UCwr7yMxXfGvOnDkz+P4Y27dvH3x/LLXnmoqcKg3JFKQ90UITkfMBHARwGYCXAPw+gGs7NtWu/VX1CIAjALB///7ObQhZOrFRge9xfaKyoePHSmzoWH2CixWb65gXpZYfFkUhbwPwdVV9EQBE5NMAfgjALhHZ1kRpWwCeN2iLkMVgUS1oJTMfkVlKbIh1OzFii43WLCohKTU7LIT2DICrRGQnVinHqwEcBfAQgHdiVel4CMC9Bm0RUjVWJe+pU4xd242JLNWixO12u+Q2JDaXaC11CpJSs8NiDO0REbkHq9L8VwB8AasU4v8EcLeI/Erz2h2xbRFSA6nnaVnJLFZkKRclHpNbn9hCorWpUpCpyLFPqTCZh6aqHwDwgY2XnwZwpcXxCSmFOZ8JFrpCvnVUFrsUlssNeExuZ86cCYrWLFKQSxJIbnClEEIcyOnhlV1MnWL0FZnPz8937cY+SYVEa1YpSF+YdrSBQiPJsZBB6k+9uQurj5jnlrnIzCUqi1k9xBWXpa18xRYTrY31NZcoLZd+TAWFRpJgLYih44390ZYqqyFi03ohMnONymKXwXKtLAS6r31ftDOUhvSRGlOP+UKhEVPmXpi2diwe1RJS/OESlVk8YqZvW985ZUPRmm/BSF8fc08RLlGoFBoxYUlSmRrfasHU42UuQuxrL5SxIpAhscVIbaz6MVepLVFmAIVGDKDM7LF++rNFijF2wrVLP9eErpTfJaCUUhuCacfpodBIMBSZHbHRzNQy8xFZyO+JywM8+8TWFa11bdsntb7+hI6nTc2SJUqhkSAoszCsJxu7rCI/tk+szEILQ3wYKgQZEttYtNYltTkkZdXekmUGUGgkAMpsmCkeDxIisq79fGQWKzKfn8vQDd5nvMxSakwh5g+FRrygzF5ljudahZbExxZ/jMnMujBkc7+Y8TIXEfmkH7v6mkPakbKl0AhxYs6HMrp+iIh55EtbZr4pxpDCEF9ix8s2peYioZKitBz7NAcUGnFmSdFZCQJb47Pk1NjKH0OyihFZyCNlfNZidInWxqQWE6XFEBvdUWavQqER0jCXxEI/KPiunRhT/BFSGBL7XLShx8L0RWHA2dFajNRySSf2QZm9FgqNOFFjdFaawNaEzPOyGi+zEpnLGFnXMUOKN8akVio1nIM1FBpZFFNKzPpDgNWK+qlkFvNcNNflrrrE5jJmNta2TxRmKcSco78SodDIKDVEZzmU0odgvZq+q8x80o8xz0QbYmi5K5dS+7Z4fKK0EtKOjM66odBItaSUWCrJ+/TZZ86X1XhZyPJYLv1d4/NomL5orU8+oe+lIrQ9yqwfCo1URyqRzRWB+fTDNyrbPJ5rijHVM9HGlrxyWcKqLaehSKzEsbTS+js1FBqphhQim3ocLLQfrsUZIeNlFus8huK6KshQyf1Q6rGPuUr4h6DMxqHQyCAljJ9NvT6iDzF9i3lQZsx6jH0ym+oxMq6PhxmSmmt6MUR2rgwJyLcdyswNCo0US44ii+1T7KogLgUaIeNlPiuJDPXPhaFiEJ95ZK6pR1IPFBopEiuZpZ4TZt2+lcg233cdLwuZYN23bRufYpDNaG2KYo85Kx0pYncoNFIUOYgsF4kB7nO/rFOM1o+QCSkG6UsX9o1/9W0/dfTmI0bKzA8KjQyyY8eObMbRLGSWYpmpFG2OtWchss33Q6KyWJH10ff8M9e5Zq7jaZvkNOeMMvOHQiNFMJfMrMvqY9vxWY3DOsU4xSNkXB4TE5Ni9InGcqx0JMNQaCR7pk7xhbQ5h8T6jmERlW2+Z7Xq/hh9BSFD42Z9khoTUsporE+aru0xOguDQiNZM6XMSpFY33FcxOKbYoxdqHiob2t8C0LGpNYlqpxSiSQdFBoZZa5xtCnHrayWnIo5bojE+vrjM5bmIrO5C0J8pbamK0rLvYQ/577lDoVGsmQqmbm2M5fEho5nKbLN91xklrogxPcJ07FthorEtV+MENNDoZHsmEJmc4osRmJ9ffIdS7OOyrr65Cu3TaEMFYOEpBhLSDsyOouDQiNOTJV2DJWZtXisxRgrsb4+hRSFxMhsTGQxvyNdkZlvMUgO6cTQ9ufudw1QaKR4LOVjeaxUEuvbL1Rkm/uGRGxDPzffgpC+BYnb/fCJvizK73OP7MgKCo04kzpKSznny0pmoROefY4x1I+Q6kbrsbL2e7Gpxr4J1Ov31q/1RV5DEVmqFGNIJEUhToOJ0ERkF4CPAbgcgAJ4H4CnAPwegEsBfAPAj6vqtyzaI/Uxp8ymEFmMUGOKQqaMymI/7PSlHLukNhSl5ZB29KW0/uaKVYT2YQB/oqrvFJHXAdgJ4JcBPKCqt4vILQBuAXCzUXtkJnJZCmsqmaUWmW801rfPkMg237eOymJXCBlbUX8sUkslMJc05WbfKaZ5iRaaiLwewA8D+CkAUNWXAbwsIgcBvKXZ7E4AnwOFRjpIMaF5TpGlkFjffj4i2zyGr+RcRBYSaY9NoB7ar4RU3lgfKUE7LCK0NwJ4EcDviMgPAngUwE0A3qCqJwBAVU+IyIVdO4vIYQCHAWBra8ugO2TppJTZ1CLziX5CV8f3lZnlUlebx+iTmst4GiEWQtsG4AoAP6uqj4jIh7FKLzqhqkcAHAGA/fv3q0F/SGIs047W0Vmq6ChUZJbRWN8+KaOyze+tVwnxWRUkJRRkHVgI7TiA46r6SPP9PVgJ7ZsiclETnV0E4AWDtsiCyU1m1iLzHYvyEdnm+7FRmdUqIT6rguQQmQ21H9K3uc+nNqKFpqp/IyLPisj3qepTAK4G8JXm3yEAtzf/3xvbFlkuVhV0m1hHZbmLbPN9C5lZROtDq4LMTV8/XPqXyzksBasqx58FcFdT4fg0gPcCOAfAp0TkRgDPAHiXUVukEizGXVyOZSkzKyn57tPVH9/J1SFVjD6rhAz1axOfCMxlrplV9DalgBid2WMiNFV9HMCBjreutjg+yY8py/djUo2x0c/Y9hZzx4b2sRDZ5vshVYwuMvP5gNJV2ehDDulHkh9cKYTMguvNrxaZWfQlZJUQ14jNNcVoXeE4VAQyZ9rR4knVTDdOD4VGimUumZUgss1tUqQYLVPGrvRFZlNXQnJCdZ5QaCRbQlOaqSTSd2yLbWP6EFMUYi2zsWvWdeOfOhJb92Hd5pCMUvWLAkwDhUYmx2oSbhc5yGwqkXVt65MutJSZ64eP2LGv9b6bUnJhbFumCMuHQiNZEjpnzGd7y/Re33Z9204psq7355BZe/spIxTf8TDf7bvOhXKcBwqNVIPPjXUKmbmKzLrtqWQ2VZVrKJZSGRo/izkWsYVCI5PiEl2lnpyck8xSt2tVll+SzFyEMef4GUkHhUaqJbVUphCZ67Zj21jKLFeGBDQmMEt5UYTzQaGRrLCMzlzIWWZWfRv7fug9qzUbQ3At4hiKsizGzyzL9ZluTAuFRqrEZ/yqjZXMrEUW2rex74eirzll1mazstFlgeDYKIlRVplQaGQyYleU6MI6UhrbZg6ZhW7nK7MxWU0hs9AIxkVAffPPQuXF6sb8oNBINkz56d+iWrBrGxeZxa40kiJymnLcbFMEXRKwTDe6SsY33egL043podBIsbjexENSjSHRW6jMUkzkjkk15gTTjcQHCo1URYiIXBgTgqXMYiM461RjStryCC2w8KlutEo3DrVF5uOcuTtAyBgx0YRFdFayzEKYMt3YxaZ0fJa7Wr/H6sZlQqGRIvFJ3fluE8tcMusipwnQQ2NnscUgPqnIITEyyiobCo0sGuvobAqZ9eEir7nGzlxl5hqdpS4GGYLVjflCoZEsSBFJuKQbffCVmcsxQrbNKepywTX68pWC9XjYmGRDYbpxOig0shimXq9wyrRgrnPExqKZoYd1WkRnUxSDkHyg0EjW5FpePld0NgVDN3tXqe3YscNLZnNFZ2PFIC7vUY75wLJ9UgXWAoidt5UqOssh3bi+qW/2ZUx2LjKbKzrrkxLTjWVBoRGCfCPBudi5c+foz8TnZu2zNFXfca3Th77FICR/mHIkwZT86TMm0kmdbkxJ180/9XUcmsM1FHn5CMsqOvOde8Z0Y15QaKRKQqTTR6p0Ywhj0YslO3fujLphd+0/Nm42lmosKTor+QNfqVBohFSMa1Rh+eTmPhG6jpv5tAO4R2djsBikfDiGRkgl7NixIyo6HNq/ffPuilh9KiNdy/ZjBeXSx1TFIGQeGKGRLOi7SS31xmJROj+0fd/xXdda3Pzn2nafzEJTjSHRGYtB6oVCI8QYq/RUiNR8Xo+R2hhd89BcZZYC62KQMTh+Ng8UGomCf7hx+Mzdct3XSmqh19ZnQvXQtjlHZ0vNHOQOhUYmY8qbQI5ppdCIaAqpjYltrGBiaDsXmVmNk3XhE52RsqHQyCKILT9vsylLi7ldc0ttrI31fl3/+tgU5ZjMhvrkG5114fIhxyLdSOaDQiNV4CusuW5UY2LyEYTLvkOv+7bhytj8s77XLasaY+epDeEifjIPFBqJhn/AflFa7A3RKlobEmiI2Fzmn/X1xaWtmOisry3+7taF2Tw0ETkXwFEAz6nqdSJyGYC7AewG8BiA96jqy1btkfqInUcVg8vahW22b9/u9Ly1vnNa31T72lzfaMfmhXXt37dvX19c55+FMCSzLhFZrAgSWgzCdGP5WEZoNwF4svX9BwF8SFX3AfgWgBsN2yKFYlW+nvpmM1Ry3kdI0YfLPK6YNKTr8WKqGvva3pTX2LiZzziYSzqSlYjLw0RoIrIF4McAfKz5XgC8FcA9zSZ3AniHRVuE5ELXp/6YSkYXsfmmCH3H0GLF1rX/0PdDYuorBOnCtVSf6ca6sYrQfhPALwH4p+b7CwC8pKqvNN8fB7C3a0cROSwiR0Xk6MmTJ426Q5aIbzXiWBQWEqUNbeciC5exq1Cx+RzHtZJxc9uxdrtkttn/vv6GbGMNo768iRaaiFwH4AVVfbT9csem2rW/qh5R1QOqemDPnj2x3SEzYfVpt7RPzX1RQ0wacb1/TDrSN1rzkZaL7MYitaFxs67zcInOxhjajqKqA4uikDcDuF5E3g5gO4DXYxWx7RKRbU2UtgXgeYO2SAX4FmDkRFff+wpEXAs/gOFHzrRvtj5FIH3tDxWNjPXFhbFIbSztFxqd+RSDuAiclEd0hKaqt6rqlqpeCuAGAA+q6rsBPATgnc1mhwDcG9sWWS5WhSGxace+voxFED6TlocImYvmk4b06YvLPpuvua6f2H7NNzpjtLVcUj4+5mYAd4vIrwD4AoA7ErZFSCeu5fVDdJW190VqwNkPF23vA4w/MNQlchuK2oYiNtdtu/riy9CHhZj0o29UR5aDqdBU9XMAPtd8/TSAKy2PT8gYFulM12P0becqNsBWbi6yGtt2qB1XXKNal/1ixs76qhtJvXClEGJGqZ+SXfrtU3yxZvv27aMTetvFH7FpSZ/UYkjqcoyhlGdff1xThhaFH5b7kDzhE6vJ4nCJwPrScyGrfrSlNpb+3Ly5hhSUdPXHt3Bks40QxuQ6VhzS9WHAIt1Y6gcvMg4jNJIdvsUIY7gse+SaJoud+7SO2lyit/UxQ8v3u/Yb29YiWnFpN6Q4ZOy1XJhr+TbCCI0slJixtqFCCp/xMeBs2Q5FcJbl+y7n4PvzcV0lxUVmIdFZ3/45y4/YQqGRYogt1hjDtZpxaPvNfde49sdVcFNUOVqIwFVmbcZkREGRPig0sghiyvfHpAaMp5m6bsJWEVxuVY6bx9tsu4sxceUy7nXq1CkKNWMoNGJGaWMHvoUfQwIKWWUjRHJDUwIsxNbefnOfMXzGF31SjS7t5SaZ06dPZyPhJUGhkeyYW4yh1Yzrfdv4notrleNQ5aSV2Nr7hOJT6eiyKr5r4Q1ZJhQaKYYU6z/2RV5D42M+RRNdQoiJ4nwmcoeIra8NX1wqRHOLqtowwioTCo0sBt9xNJeij9Dikz58xuJcl97yXaQ4VG5jUwuGtvWNzuaUjes4GqU4PRQaMcEn6shtpX2rSkYg/tx8UpZ9orISW3ufUFyKQ2JL7GP7yEKPeqDQCBlhTGptQqsZh9pu4zO2Zyk2X1yXChsa78q56IPkCYVGorGMzqwKQnzTgSmqGNvHHsO1r75LXgHhYutrx6Vvm3T9DIaeKD50rKnSeEMpQ6Yd84RCI4tiaBzNRYKWUcxm212ESNZKbJvthOIrM5f9+2CF47Kh0EgUU5XY991s5yrxt56I3IdLgYa12Iba8qFPRGMy8xFoCalIRmnTQaGRyZgq3RhDSOWi680q9vws13IE3CZpD7U3ts8mXdHTmMxiZOdDXwrRIu1IpoNCI8GUXNk4RMzCxUNYis9lpQ8LsW3uG4qLzKaCEVO9UGgkCOtoauh41nJxmY8WuuK8BT6TsUMXKe7a3ue5bS74Pm26pInXa1gckhcUGknOHFKwanNOsbVxGbMLnUA9tPpIGxfJuT7jbZOYp4ZbEZJ2JHlBoRFvconOYvrhu2qIdcFEDGOVlkPLeXXt5yrt2ApC1+elDW1rBSVVJxQa8cJXInPf/FMwRSrMZ51I34WUrZe8GsNnSayx7UO2S128wbRjPlBoxJkUMpty7GyTmGekpcanytBabL7tj+3bh8/N3XXbM2fOREWSTDuWDYVGnEhRUh9zzBxK/KckZj5ae39fsXW1H4vviiKpoKTq45y5O0DqJDa6mipVWeLKEjt37hxN4w2tpTg0ljW0byxjx/YZY0tJyCR+19/XpX0QmxoKjYwydapxakqUGpBObO19LWTicpzUkVmNY7nkbJhyJIPkKLMUMnSZXBxyvBhc++KyFmPMw0r7ZNR1zBABzjnfjGnHuqDQSC9zRVFW6wiGHGdTRH1SmSKqc+3LmphxspD5dhYiGJNZSBuxhSEAl8IqFQqNdBIis9JSjS7klI50jSLHHlgKhK08YonFjd9XILkIh1FhOig0YoLVzY9jHeP4rL0YKrb2MYaOE0IOUmlDwdQDhUbOIlUUVVp0ljuuYrN4cGnMk7hDBRYjGYu0IykPCo28hlSpximPsybVqvmWWPRxbIK4T+GHz/XPLdJywSftyEnW5UGhkf9PSplZRWe+x5lbai43z5CnVW9iEa0B6Z7IvRRyGadbKpyHRgCUcwPLuSx8Pber/c/ieD6Mpdlcj5lygrULrm1bfVgp5fefDBMtNBG5WEQeEpEnReTLInJT8/puEblfRL7W/H9+fHdJTlhGZ6mjKAvBdB3PSl4ubbkS+giXLuYWWwy5rtNJ0mGRcnwFwC+q6mMi8s8APCoi9wP4KQAPqOrtInILgFsA3GzQHjFmSZ9OfRfdzSl95DNXzKISso3L89hKgWnBeokWmqqeAHCi+frvReRJAHsBHATwlmazOwF8DhRadoTenGpZu67EG5vPuKDr07lDJlTnfm3J8jAdQxORSwHsB/AIgDc0sltL78KefQ6LyFEROXry5EnL7pARSr0hlZoCsyRFCtJX7qkWM+b1JaGYCU1EvgvAHwD4eVX9O9f9VPWIqh5Q1QN79uyx6g5JSO6l8EvBWmq+x2yTeqV+QlwwEZqIfAdWMrtLVT/dvPxNEbmoef8iAC9YtEVsKDU6W8Ob54qcpLaG14bMRfQYmogIgDsAPKmqv9F66z4AhwDc3vx/b2xbxIYYmaWKzkLniw2tJD8HITfy2P5bj6n5HrOPkLE2ipDEYFHl+GYA7wHwRRF5vHntl7ES2adE5EYAzwB4l0FbJJKcbv5WzFGkYHnjtaggTDGBPGQF/i5crw9lRmKxqHL8XwCk5+2rY49P7MhdZrE35a4bYsw5z3GDnSLidI3SrOkTW00iK7Fqtia49BWpmhJvlqFSS5F69D2uC3NfE0qnXrj01ULIPTpbw5vNiilu+j6r0dd+XXx+3rHXZm6h1wyFtgCsZDZVuX7qpaRKIbd1K3O8JkN9in18TI7nS4ah0Cpn7sgs5tMobyjpP80v7ZlhSxP+0qDQKmZumVkwxeK/tbGUm7ZVdDZlupGkhUUhlZJCZnPPFfNdWDg1VmXtxJ/UYk11fAoxLRRaZeQalaUoR88lWhjqh4XsUpfy+5bx5/7Q1L7orGs/K8Hk8ru4dJhyrITTp09nK7M1S/x0Ole6tNYbrKXMfNtgdWP+UGiFU4LI2ix1nb9YseVWHFKDpJf4e1g7FFqhzCUyq5vKksVWC1Oei0tbc0VnNV3T0qHQCmItsbkjMss/4CU+diTmES1TtJNTG66Rra/Mun6WKWW2pN/vOWFRSObMLa8+UhQGbP7R53ruFsxdWNFF6BqPKRdGHmMoVZpqLIzkC4WWIaXcyFPflH1uPKX8zNrkKLVQrM7F6vluvjJjdFYHFFomlHhDBvK5KU9505jzWvmW8Pten5iV+Ns3eJ82Q9KWc8vMFcpsWii0mSlVZG2WNsHYMjWayweCNhaPl0k1tjZWjWklszFYCJInLAqZkRpk1mapS1TFFrX4/symKA7JbY3H7du3j0ZlljJjqrFMGKHNQG0i2yQ09VQ6czw525WQSHCuB4Fu9mGMEDGllhmZB0ZoE5PjzS4lS1xceIrHvkz16X+uSG0sIgPGMwLWMvOB0dk8MEKbkKXJbJO+G0mNUVzI+ou+UVTqApE1a7GkjtasHjgaGmGNSYipxvyh0CZi6TIbYorobQ5ppl5UOKSNmCKUFGKzXnKLMls2FNoEUGbz4yNNS/lNIZyQNoDw89yUkKvgYtKXqUQ2tq/L/q7HIemh0BJDmZWH9XPXcpRaaDtdpBpncxFJjIxcBESZlQWFlhDKrA4s5tnlLDUgr3HM1CJz2d+1HyQvKDRCHIm9+ecqtdC2LLGMhKZKMfr0iUwDhZYIRmf1EnPzz11qa1LLLYU05ojKKLO8oNAICWDKVF2o1IDwD1aW44ipH2xqkaJ0PY7vMcm0UGgJKCU68/2DLOW8piT3Ag6r1UumHE9y/b20EpnrsXyPSaaHQlsYMX+MrvsuTXwlFHDkvCwX4Pd7OZfIfI5L5oFCWwBT/xHO+Uc/1w17yrRg7BheSJspSLXIMmW2XCi0ylnaH+HY+aa8kcekBacut2//nKaSW+o1LlOJzOfYZF4otErhH2A3ls8y62JKqa3bA+LnyG0S+3OJ/f2jyEgIFFpl8A87y808AAAJxklEQVTQjxQpuDkKOKyrLuf4PUpZmEGZLYPkj48RkWtE5CkROSYit6Rub8nwDzCc2Id0bpK6VH2o3ZIe1+PbX9/rFPqz4N9SmSSN0ETkXAAfAfAjAI4D+LyI3KeqX0nZ7tLgH58dlhHb3MUbOT5oNVS0U0RkIe2QvEidcrwSwDFVfRoARORuAAcBVC20KR4b0m6L2GN1Da2KN6znkU0luKkj1bkiY5IHqYW2F8Czre+PA/i3idtcBPzjS08u0Zp1X9b92WSu1UDahP5eU2QESC806XhNX7OByGEAhwFga2srcXemI1WUxj++6bGM1iweRbMmRYXmHMwhsZh2Sb6kFtpxABe3vt8C8Hx7A1U9AuAIAOzfv/81sisda6nxD3A+cklBtpljLpkVsYUvc7VN8ia10D4PYJ+IXAbgOQA3APgPidvMithUEf/48sHyA0rKMvtc5Tbl3LRUfSB5k1RoqvqKiPxHAH8K4FwAH1fVL6dsM1d8xMY/unyxjrpTrNqfevJ4SB9CmXtsjpRF8onVqvoZAJ9J3U4p8A+rfFJNxgbSVB+mWAlk7PgxWI7l8e9tWXClEEICSVH4M9Vz1nK70VNixAIKjZAIUlWz5jgp2hrrqkqKjFBohESS+pEsNcktxdQAioysodAIMWKKFWLmWvEjBkqMTAWFRoghUz9A03rFj1hST86myMgQFBohCZjzydBTSW6qlUUoMeIKhUZIQuYUW5tSHifThiIjvlBohExALmLLHUqMxEChETIhFNvZUGLECgqNkBkoYe3FlFBiJAUUGiEzk8Pai1NAiZHUUGiEZEZNgqPEyJRQaIRkTurFha2gvMjcUGiEFMjckqO8SI5QaIRUgo9khuRHWZFSodAIWSCUFqmRc+buACGEEGIBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCqoBCI4QQUgUUGiGEkCqg0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCqoBCI4QQUgUUGiGEkCqg0AghhFRBlNBE5NdE5Ksi8oSI/KGI7Gq9d6uIHBORp0TkR+O7SgghhPQTG6HdD+ByVf0BAH8F4FYAEJE3AbgBwPcDuAbAb4vIuZFtEUIIIb1ECU1VP6uqrzTfPgxgq/n6IIC7VfUfVPXrAI4BuDKmLUIIIWQIyzG09wH44+brvQCebb13vHmNEEIIScK2sQ1E5M8AfE/HW7ep6r3NNrcBeAXAXevdOrbXnuMfBnAYALa2tro2IYQQQkYZFZqqvm3ofRE5BOA6AFer6lpaxwFc3NpsC8DzPcc/AuAIAOzfv79TeoQQQsgYsVWO1wC4GcD1qnqq9dZ9AG4QkfNE5DIA+wD8RUxbhBBCyBCjEdoI/xXAeQDuFxEAeFhVf0ZVvywinwLwFaxSke9X1f8b2RYhhBDSS5TQVPV7B977VQC/GnN8QgghxBWuFEIIIaQKKDRCCCFVQKERQgipAnm10n5+RORFAH89sMkeACcn6s5U8JzKocbz4jmVQY3nBLif179Q1e8e2ygroY0hIkdV9cDc/bCE51QONZ4Xz6kMajwnwP68mHIkhBBSBRQaIYSQKihNaEfm7kACeE7lUON58ZzKoMZzAozPq6gxNEIIIaSP0iI0QgghpBMKjRBCSBUUITQRuUZEnhKRYyJyy9z9CUFELhaRh0TkSRH5sojc1Ly+W0TuF5GvNf+fP3dffRGRc0XkCyLyR833l4nII805/Z6IvG7uPvoiIrtE5B4R+Wpzzf5d6ddKRH6h+d37koh8UkS2l3itROTjIvKCiHyp9VrntZEVv9XcO54QkSvm63k/Pef0a83v3xMi8ocisqv13q3NOT0lIj86T6+H6Tqn1nv/SURURPY035tcp+yFJiLnAvgIgGsBvAnAT4jIm+btVRCvAPhFVf3XAK4C8P7mPG4B8ICq7gPwQPN9adwE4MnW9x8E8KHmnL4F4MZZehXHhwH8iar+KwA/iNX5FXutRGQvgJ8DcEBVLwdwLoAbUOa1+gSAazZe67s212L1+Kp9WD1I+KMT9dGXT+Dsc7ofwOWq+gMA/grArQDQ3DduAPD9zT6/3dwnc+MTOPucICIXA/gRAM+0Xja5TtkLDcCVAI6p6tOq+jKAuwEcnLlP3qjqCVV9rPn677G6Qe7F6lzubDa7E8A75ulhGCKyBeDHAHys+V4AvBXAPc0mJZ7T6wH8MIA7AEBVX1bVl1D4tcLq6Ro7RGQbgJ0ATqDAa6Wqfw7gbzde7rs2BwH8rq54GMAuEblomp6603VOqvpZVX2l+fZhrB6UDKzO6W5V/QdV/TqAY1jdJ7Oi5zoBwIcA/BKAdkWiyXUqQWh7ATzb+v5481qxiMilAPYDeATAG1T1BLCSHoAL5+tZEL+J1S/nPzXfXwDgpdYfYonX640AXgTwO00q9WMi8p0o+Fqp6nMAfh2rT8UnAHwbwKMo/1qt6bs2tdw/3gfgj5uviz0nEbkewHOq+pcbb5mcUwlCk47Xip1rICLfBeAPAPy8qv7d3P2JQUSuA/CCqj7afrlj09Ku1zYAVwD4qKruB/B/UFB6sYtmTOkggMsA/HMA34lVmmeT0q7VGMX/PorIbVgNWdy1fqljs+zPSUR2ArgNwH/uervjNe9zKkFoxwFc3Pp+C8DzM/UlChH5Dqxkdpeqfrp5+Zvr0Lr5/4W5+hfAmwFcLyLfwCoV/FasIrZdTVoLKPN6HQdwXFUfab6/ByvBlXyt3gbg66r6oqr+I4BPA/ghlH+t1vRdm6LvHyJyCMB1AN6tr04aLvWc/iVWH6j+srlnbAF4TES+B0bnVILQPg9gX1ON9TqsBkPvm7lP3jRjS3cAeFJVf6P11n0ADjVfHwJw79R9C0VVb1XVLVW9FKvr8qCqvhvAQwDe2WxW1DkBgKr+DYBnReT7mpeuBvAVFHytsEo1XiUiO5vfxfU5FX2tWvRdm/sA/GRTRXcVgG+vU5O5IyLXALgZwPWqeqr11n0AbhCR80TkMqwKKf5ijj76oKpfVNULVfXS5p5xHMAVzd+bzXVS1ez/AXg7VlU+/xvAbXP3J/Ac/j1WIfQTAB5v/r0dqzGnBwB8rfl/99x9DTy/twD4o+brN2L1B3YMwO8DOG/u/gWcz78BcLS5Xv8DwPmlXysA/wXAVwF8CcB/B3BeidcKwCexGgf8x+ameGPftcEqlfWR5t7xRayqPGc/B8dzOobVuNL6fvHfWtvf1pzTUwCunbv/rue08f43AOyxvE5c+ooQQkgVlJByJIQQQkah0AghhFQBhUYIIaQKKDRCCCFVQKERQgipAgqNEEJIFVBohBBCquD/AcBv01BDiblzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "fig.set_size_inches(7, 5)\n", "\n", "x_coord = [i[0] for i in ozil_pass[\"location\"]]\n", "y_coord = [i[1] for i in ozil_pass[\"location\"]]\n", "\n", "#shades: give us the heat map we desire\n", "# n_levels: draw more lines, the larger n, the more blurry it looks\n", "sns.kdeplot(x_coord, y_coord, shade = \"True\", color = \"black\", n_levels = 30)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }