Compare commits

...

2 Commits

Author SHA1 Message Date
Andrzej Preibisz
a096f7bd29 Neural trigram model fixed 2023-06-03 23:35:00 +02:00
Andrzej Preibisz
c1d7f18b1d Neural trigram model 2023-05-09 20:31:19 +02:00
5 changed files with 1851 additions and 0 deletions

3
.gitignore vendored
View File

@ -6,3 +6,6 @@
*.o
.DS_Store
.token
train/
test-A/
dev-0/

20
gonito.yaml Normal file
View File

@ -0,0 +1,20 @@
description: trigram model prediction
tags:
- neural-network
- trigram
params:
epochs: 5
learning-rate: 0.001
vocab_size: 30000
embed_size: 300
hidden_size: 150
batch_size: 1000
unwanted-params:
- model-file
- vocab-file
param-files:
- "*.yaml"
- config/*.yaml
links:
- title: "repository"
url: "https://git.wmi.amu.edu.pl/s444465/challenging-america-word-gap-prediction.git"

0
main.py Normal file
View File

1665
neural_trigram.ipynb Normal file

File diff suppressed because it is too large Load Diff

163
neural_trigram.py Normal file
View File

@ -0,0 +1,163 @@
# -*- coding: utf-8 -*-
import itertools
import lzma
import numpy as np
import regex as re
import torch
from torch import nn
from torch.utils.data import IterableDataset, DataLoader
from torchtext.vocab import build_vocab_from_iterator
vocab_size = 30000
embed_size = 300
hidden_size = 150
batch_size = 1000
device = 'cuda'
train_path = 'train/in.tsv.xz'
model_path = 'model.bin'
# Commented out IPython magic to ensure Python compatibility.
from google.colab import drive
drive.mount('modelowanie_jezyka', force_remount=True)
# %cd /content/modelowanie_jezyka/MyDrive/modelowanie_jezyka
def process_line(line):
separated = line.split('\t')
left = separated[6].replace(r'\n', ' ').strip()
right = separated[7].replace(r'\n', ' ').strip()
line = left + ' ' + right
return line
def get_line(line):
line = process_line(line)
for word in line.split():
yield word
def get_word_lines_from_file(file_name):
i = 0
with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:
for line in fid:
if i > 100_000:
break
i += 1
yield get_line(line)
def double_look_ahead_iterator(gen):
prev_prev = None
prev = None
for item in gen:
if prev_prev is not None:
yield np.asarray((prev_prev, prev, item))
prev_prev = prev
prev = item
def prediction(words, model, top):
words_tensor = [train_dataset.vocab.forward([word]) for word in words]
word_t = torch.tensor(words_tensor).view(-1).to(device)
out = model(word_t)
top = torch.topk(out[0], top)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
zipped = list(zip(top_words, top_probs))
for index, element in enumerate(zipped):
unk = None
if '<unk>' in element:
unk = zipped.pop(index)
zipped.append(('', unk[1]))
break
if unk is None:
zipped[-1] = ('', zipped[-1][1])
return ' '.join([f'{x[0]}:{x[1]}' for x in zipped])
def create_outputs(folder_name, model, top):
print(f'Creating outputs in {folder_name}')
with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid:
with open(f'{folder_name}/out-top={top}.tsv', 'w', encoding='utf-8', newline='\n') as f:
for line in fid:
separated = line.split('\t')
prefix = separated[6].replace(r'\n', ' ').split()[-2:]
output_line = prediction(prefix, model, top)
f.write(output_line + '\n')
def train_model(lr):
model = TrigramNeuralLanguageModel(vocab_size, embed_size, hidden_size).to(device)
data = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for batch in data:
x = batch[:, :2]
y = batch[:, 2]
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
predicted = model(x)
loss = criterion(torch.log(predicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
optimizer.step()
torch.save(model.state_dict(), model_path)
def with_hyperparams():
train_model(lr=0.001)
model = TrigramNeuralLanguageModel(vocab_size, embed_size, hidden_size).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()
for top in [100, 200, 400, 600, 800]:
create_outputs('dev-0', model, top)
create_outputs('test-A', model, top)
"""### Classes"""
class Trigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens=vocabulary_size,
specials=['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return double_look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
class TrigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size, hidden_size):
super(TrigramNeuralLanguageModel, self).__init__()
self.embedding_size = embedding_size
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
self.linear = nn.Linear(2 * embedding_size, hidden_size)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_size, vocabulary_size)
self.softmax = nn.Softmax()
def forward(self, x):
x = self.embedding(x).view((-1, 2 * self.embedding_size))
x = self.linear(x)
x = self.relu(x)
x = self.linear2(x)
return self.softmax(x)
vocab = build_vocab_from_iterator(
get_word_lines_from_file(train_path),
max_tokens=vocab_size,
specials=['<unk>']
)
vocab.set_default_index(vocab['<unk>'])
train_dataset = Trigrams(train_path, vocab_size)
with_hyperparams()