Compare commits
No commits in common. "neural-trigram-444465" and "master" have entirely different histories.
neural-tri
...
master
3
.gitignore
vendored
3
.gitignore
vendored
@ -6,6 +6,3 @@
|
|||||||
*.o
|
*.o
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.token
|
.token
|
||||||
train/
|
|
||||||
test-A/
|
|
||||||
dev-0/
|
|
||||||
|
20
gonito.yaml
20
gonito.yaml
@ -1,20 +0,0 @@
|
|||||||
description: trigram model prediction
|
|
||||||
tags:
|
|
||||||
- neural-network
|
|
||||||
- trigram
|
|
||||||
params:
|
|
||||||
epochs: 5
|
|
||||||
learning-rate: 0.001
|
|
||||||
vocab_size: 30000
|
|
||||||
embed_size: 300
|
|
||||||
hidden_size: 150
|
|
||||||
batch_size: 1000
|
|
||||||
unwanted-params:
|
|
||||||
- model-file
|
|
||||||
- vocab-file
|
|
||||||
param-files:
|
|
||||||
- "*.yaml"
|
|
||||||
- config/*.yaml
|
|
||||||
links:
|
|
||||||
- title: "repository"
|
|
||||||
url: "https://git.wmi.amu.edu.pl/s444465/challenging-america-word-gap-prediction.git"
|
|
1665
neural_trigram.ipynb
1665
neural_trigram.ipynb
File diff suppressed because it is too large
Load Diff
@ -1,163 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
|
|
||||||
import itertools
|
|
||||||
import lzma
|
|
||||||
import numpy as np
|
|
||||||
import regex as re
|
|
||||||
import torch
|
|
||||||
from torch import nn
|
|
||||||
from torch.utils.data import IterableDataset, DataLoader
|
|
||||||
from torchtext.vocab import build_vocab_from_iterator
|
|
||||||
|
|
||||||
vocab_size = 30000
|
|
||||||
embed_size = 300
|
|
||||||
hidden_size = 150
|
|
||||||
batch_size = 1000
|
|
||||||
device = 'cuda'
|
|
||||||
train_path = 'train/in.tsv.xz'
|
|
||||||
model_path = 'model.bin'
|
|
||||||
|
|
||||||
# Commented out IPython magic to ensure Python compatibility.
|
|
||||||
from google.colab import drive
|
|
||||||
drive.mount('modelowanie_jezyka', force_remount=True)
|
|
||||||
# %cd /content/modelowanie_jezyka/MyDrive/modelowanie_jezyka
|
|
||||||
|
|
||||||
def process_line(line):
|
|
||||||
separated = line.split('\t')
|
|
||||||
left = separated[6].replace(r'\n', ' ').strip()
|
|
||||||
right = separated[7].replace(r'\n', ' ').strip()
|
|
||||||
line = left + ' ' + right
|
|
||||||
return line
|
|
||||||
|
|
||||||
|
|
||||||
def get_line(line):
|
|
||||||
line = process_line(line)
|
|
||||||
for word in line.split():
|
|
||||||
yield word
|
|
||||||
|
|
||||||
def get_word_lines_from_file(file_name):
|
|
||||||
i = 0
|
|
||||||
with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:
|
|
||||||
for line in fid:
|
|
||||||
if i > 100_000:
|
|
||||||
break
|
|
||||||
i += 1
|
|
||||||
yield get_line(line)
|
|
||||||
|
|
||||||
def double_look_ahead_iterator(gen):
|
|
||||||
prev_prev = None
|
|
||||||
prev = None
|
|
||||||
for item in gen:
|
|
||||||
if prev_prev is not None:
|
|
||||||
yield np.asarray((prev_prev, prev, item))
|
|
||||||
prev_prev = prev
|
|
||||||
prev = item
|
|
||||||
|
|
||||||
def prediction(words, model, top):
|
|
||||||
words_tensor = [train_dataset.vocab.forward([word]) for word in words]
|
|
||||||
word_t = torch.tensor(words_tensor).view(-1).to(device)
|
|
||||||
out = model(word_t)
|
|
||||||
top = torch.topk(out[0], top)
|
|
||||||
top_indices = top.indices.tolist()
|
|
||||||
top_probs = top.values.tolist()
|
|
||||||
top_words = vocab.lookup_tokens(top_indices)
|
|
||||||
zipped = list(zip(top_words, top_probs))
|
|
||||||
for index, element in enumerate(zipped):
|
|
||||||
unk = None
|
|
||||||
if '<unk>' in element:
|
|
||||||
unk = zipped.pop(index)
|
|
||||||
zipped.append(('', unk[1]))
|
|
||||||
break
|
|
||||||
if unk is None:
|
|
||||||
zipped[-1] = ('', zipped[-1][1])
|
|
||||||
return ' '.join([f'{x[0]}:{x[1]}' for x in zipped])
|
|
||||||
|
|
||||||
def create_outputs(folder_name, model, top):
|
|
||||||
print(f'Creating outputs in {folder_name}')
|
|
||||||
with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid:
|
|
||||||
with open(f'{folder_name}/out-top={top}.tsv', 'w', encoding='utf-8', newline='\n') as f:
|
|
||||||
for line in fid:
|
|
||||||
separated = line.split('\t')
|
|
||||||
prefix = separated[6].replace(r'\n', ' ').split()[-2:]
|
|
||||||
output_line = prediction(prefix, model, top)
|
|
||||||
f.write(output_line + '\n')
|
|
||||||
|
|
||||||
def train_model(lr):
|
|
||||||
model = TrigramNeuralLanguageModel(vocab_size, embed_size, hidden_size).to(device)
|
|
||||||
data = DataLoader(train_dataset, batch_size=batch_size)
|
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
|
||||||
criterion = torch.nn.NLLLoss()
|
|
||||||
|
|
||||||
model.train()
|
|
||||||
step = 0
|
|
||||||
for batch in data:
|
|
||||||
x = batch[:, :2]
|
|
||||||
y = batch[:, 2]
|
|
||||||
x = x.to(device)
|
|
||||||
y = y.to(device)
|
|
||||||
optimizer.zero_grad()
|
|
||||||
predicted = model(x)
|
|
||||||
loss = criterion(torch.log(predicted), y)
|
|
||||||
if step % 100 == 0:
|
|
||||||
print(step, loss)
|
|
||||||
step += 1
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
|
|
||||||
|
|
||||||
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
torch.save(model.state_dict(), model_path)
|
|
||||||
|
|
||||||
def with_hyperparams():
|
|
||||||
train_model(lr=0.001)
|
|
||||||
model = TrigramNeuralLanguageModel(vocab_size, embed_size, hidden_size).to(device)
|
|
||||||
model.load_state_dict(torch.load(model_path))
|
|
||||||
model.eval()
|
|
||||||
for top in [100, 200, 400, 600, 800]:
|
|
||||||
create_outputs('dev-0', model, top)
|
|
||||||
create_outputs('test-A', model, top)
|
|
||||||
|
|
||||||
"""### Classes"""
|
|
||||||
|
|
||||||
class Trigrams(IterableDataset):
|
|
||||||
def __init__(self, text_file, vocabulary_size):
|
|
||||||
self.vocab = build_vocab_from_iterator(
|
|
||||||
get_word_lines_from_file(text_file),
|
|
||||||
max_tokens=vocabulary_size,
|
|
||||||
specials=['<unk>'])
|
|
||||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
|
||||||
self.vocabulary_size = vocabulary_size
|
|
||||||
self.text_file = text_file
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return double_look_ahead_iterator(
|
|
||||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
|
||||||
|
|
||||||
class TrigramNeuralLanguageModel(nn.Module):
|
|
||||||
def __init__(self, vocabulary_size, embedding_size, hidden_size):
|
|
||||||
super(TrigramNeuralLanguageModel, self).__init__()
|
|
||||||
self.embedding_size = embedding_size
|
|
||||||
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
|
|
||||||
self.linear = nn.Linear(2 * embedding_size, hidden_size)
|
|
||||||
self.relu = nn.ReLU()
|
|
||||||
self.linear2 = nn.Linear(hidden_size, vocabulary_size)
|
|
||||||
self.softmax = nn.Softmax()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.embedding(x).view((-1, 2 * self.embedding_size))
|
|
||||||
x = self.linear(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
x = self.linear2(x)
|
|
||||||
return self.softmax(x)
|
|
||||||
|
|
||||||
vocab = build_vocab_from_iterator(
|
|
||||||
get_word_lines_from_file(train_path),
|
|
||||||
max_tokens=vocab_size,
|
|
||||||
specials=['<unk>']
|
|
||||||
)
|
|
||||||
|
|
||||||
vocab.set_default_index(vocab['<unk>'])
|
|
||||||
train_dataset = Trigrams(train_path, vocab_size)
|
|
||||||
with_hyperparams()
|
|
Loading…
Reference in New Issue
Block a user