This commit is contained in:
Andrzej Preibisz 2022-05-24 00:05:44 +02:00
parent a648c1f6d1
commit 535a165c6d
6 changed files with 109 additions and 3 deletions

View File

@ -12,8 +12,8 @@ WORKDIR app
ARG EPOCHS ARG EPOCHS
ENV EPOCHS=${EPOCHS} ENV EPOCHS=${EPOCHS}
COPY ml_training.py ./ COPY mlflow_training.py ./
COPY heart_2020_cleaned.csv ./ COPY heart_2020_cleaned.csv ./
CMD ["python3", "./ml_training.py $EPOCHS"] CMD ["python3", "./mlflow_training.py $EPOCHS"]

12
MLProject Normal file
View File

@ -0,0 +1,12 @@
name: s444465
docker_env:
image: s444465/ium:mlflow
entry_points:
main:
parameters:
epochs: {type: float, default: 10}
command: "python mlflow_training.py {epochs}"
test:
command: "python mlflow_training.py test"

94
mlflow_training.py Normal file
View File

@ -0,0 +1,94 @@
import mlflow
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from mlflow.models.signature import infer_signature
from sklearn.preprocessing import StandardScaler
import sys
mlflow.set_experiment("s444465")
def evaluate_model(model, test_x, test_y):
test_loss, test_acc, test_rec = model.evaluate(test_x, test_y, verbose=1)
# print("Accuracy:", test_acc)
# print("Loss:", test_loss)
# print("Recall:", test_rec)
return test_acc, test_loss, test_rec
def main():
no_of_epochs = int(sys.argv[1]) if (len(sys.argv) == 2 and sys.argv[1].isdigit()) else 10
is_testing = (len(sys.argv) == 2) and not sys.argv[1].isdigit() and sys.argv[1] == "test"
mlflow.log_param("epochs", no_of_epochs)
scaler = StandardScaler()
feature_names = ["BMI", "SleepTime", "Sex", "Diabetic", "PhysicalActivity", "Smoking", "AlcoholDrinking"]
dataset = pd.read_csv('heart_2020_cleaned.csv')
dataset = dataset.dropna()
dataset["Diabetic"] = dataset["Diabetic"].apply(lambda x: True if "Yes" in x else False)
dataset["HeartDisease"] = dataset["HeartDisease"].apply(lambda x: True if x == "Yes" else False)
dataset["PhysicalActivity"] = dataset["PhysicalActivity"].apply(lambda x: True if x == "Yes" else False)
dataset["Smoking"] = dataset["Smoking"].apply(lambda x: True if x == "Yes" else False)
dataset["AlcoholDrinking"] = dataset["AlcoholDrinking"].apply(lambda x: True if x == "Yes" else False)
dataset["Sex"] = dataset["Sex"].apply(lambda x: 1 if x == "Female" else 0)
dataset_train, dataset_test = train_test_split(dataset, test_size=.1, train_size=.9, random_state=1)
print(dataset_test.shape)
model = tf.keras.Sequential([
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(4, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(
loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(lr=0.01),
metrics=["accuracy", tf.keras.metrics.Recall(name='recall')]
)
train_X = dataset_train[feature_names].astype(np.float32)
train_Y = dataset_train["HeartDisease"].astype(np.float32)
test_X = dataset_test[feature_names].astype(np.float32)
test_Y = dataset_test["HeartDisease"].astype(np.float32)
train_X = scaler.fit_transform(train_X)
# train_Y = scaler.fit_transform(train_Y)
test_X = scaler.fit_transform(test_X)
# test_Y = scaler.fit_transform(test_Y)
print(train_Y.value_counts())
train_X = tf.convert_to_tensor(train_X)
train_Y = tf.convert_to_tensor(train_Y)
test_X = tf.convert_to_tensor(test_X)
test_Y = tf.convert_to_tensor(test_Y)
model.fit(train_X, train_Y, epochs=no_of_epochs)
model.save("trained_model")
acc, loss, rec = evaluate_model(model, test_X, test_Y)
mlflow.log_metric("accuracy", acc)
mlflow.log_metric("loss", loss)
signature = infer_signature(np.array(train_X), np.array(train_Y))
mlflow.sklearn.log_model(model, "mlflow_model", signature=signature, input_example=np.array(test_X[0]))
if is_testing:
predictions = model.predict(np.array(test_X))
predictions = [int(i > 0.5) for i in predictions]
accuracy = accuracy_score(np.array(test_Y), predictions)
mlflow.log_metric("eval_accuracy", accuracy)
main()

File diff suppressed because one or more lines are too long