94 lines
3.4 KiB
Python
94 lines
3.4 KiB
Python
import mlflow
|
|
import numpy as np
|
|
import pandas as pd
|
|
import tensorflow as tf
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
from mlflow.models.signature import infer_signature
|
|
from sklearn.preprocessing import StandardScaler
|
|
import sys
|
|
|
|
mlflow.set_experiment("s444465")
|
|
|
|
|
|
def evaluate_model(model, test_x, test_y):
|
|
test_loss, test_acc, test_rec = model.evaluate(test_x, test_y, verbose=1)
|
|
# print("Accuracy:", test_acc)
|
|
# print("Loss:", test_loss)
|
|
# print("Recall:", test_rec)
|
|
return test_acc, test_loss, test_rec
|
|
|
|
|
|
def main():
|
|
no_of_epochs = int(sys.argv[1]) if (len(sys.argv) == 2 and sys.argv[1].isdigit()) else 10
|
|
is_testing = (len(sys.argv) == 2) and not sys.argv[1].isdigit() and sys.argv[1] == "test"
|
|
|
|
mlflow.log_param("epochs", no_of_epochs)
|
|
scaler = StandardScaler()
|
|
feature_names = ["BMI", "SleepTime", "Sex", "Diabetic", "PhysicalActivity", "Smoking", "AlcoholDrinking"]
|
|
|
|
dataset = pd.read_csv('heart_2020_cleaned.csv')
|
|
dataset = dataset.dropna()
|
|
|
|
dataset["Diabetic"] = dataset["Diabetic"].apply(lambda x: True if "Yes" in x else False)
|
|
dataset["HeartDisease"] = dataset["HeartDisease"].apply(lambda x: True if x == "Yes" else False)
|
|
dataset["PhysicalActivity"] = dataset["PhysicalActivity"].apply(lambda x: True if x == "Yes" else False)
|
|
dataset["Smoking"] = dataset["Smoking"].apply(lambda x: True if x == "Yes" else False)
|
|
dataset["AlcoholDrinking"] = dataset["AlcoholDrinking"].apply(lambda x: True if x == "Yes" else False)
|
|
dataset["Sex"] = dataset["Sex"].apply(lambda x: 1 if x == "Female" else 0)
|
|
|
|
dataset_train, dataset_test = train_test_split(dataset, test_size=.1, train_size=.9, random_state=1)
|
|
|
|
print(dataset_test.shape)
|
|
|
|
model = tf.keras.Sequential([
|
|
tf.keras.layers.Dense(16, activation='relu'),
|
|
tf.keras.layers.Dense(8, activation='relu'),
|
|
tf.keras.layers.Dense(4, activation='relu'),
|
|
tf.keras.layers.Dense(1, activation='sigmoid')
|
|
])
|
|
|
|
model.compile(
|
|
loss=tf.keras.losses.binary_crossentropy,
|
|
optimizer=tf.keras.optimizers.Adam(lr=0.01),
|
|
metrics=["accuracy", tf.keras.metrics.Recall(name='recall')]
|
|
)
|
|
|
|
train_X = dataset_train[feature_names].astype(np.float32)
|
|
train_Y = dataset_train["HeartDisease"].astype(np.float32)
|
|
test_X = dataset_test[feature_names].astype(np.float32)
|
|
test_Y = dataset_test["HeartDisease"].astype(np.float32)
|
|
|
|
train_X = scaler.fit_transform(train_X)
|
|
# train_Y = scaler.fit_transform(train_Y)
|
|
test_X = scaler.fit_transform(test_X)
|
|
# test_Y = scaler.fit_transform(test_Y)
|
|
|
|
|
|
print(train_Y.value_counts())
|
|
|
|
train_X = tf.convert_to_tensor(train_X)
|
|
train_Y = tf.convert_to_tensor(train_Y)
|
|
|
|
test_X = tf.convert_to_tensor(test_X)
|
|
test_Y = tf.convert_to_tensor(test_Y)
|
|
|
|
model.fit(train_X, train_Y, epochs=no_of_epochs)
|
|
model.save("trained_model")
|
|
|
|
acc, loss, rec = evaluate_model(model, test_X, test_Y)
|
|
|
|
mlflow.log_metric("accuracy", acc)
|
|
mlflow.log_metric("loss", loss)
|
|
|
|
signature = infer_signature(np.array(train_X), np.array(train_Y))
|
|
|
|
mlflow.sklearn.log_model(model, "mlflow_model", signature=signature, input_example=np.array(test_X[0]))
|
|
if is_testing:
|
|
predictions = model.predict(np.array(test_X))
|
|
predictions = [int(i > 0.5) for i in predictions]
|
|
accuracy = accuracy_score(np.array(test_Y), predictions)
|
|
mlflow.log_metric("eval_accuracy", accuracy)
|
|
|
|
|
|
main() |