add roberta.py and gpt2.py files for custom heads and forwards
This commit is contained in:
parent
7faa3c4b1c
commit
c7283c591a
200
gpt2.py
Normal file
200
gpt2.py
Normal file
@ -0,0 +1,200 @@
|
||||
import logging
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
||||
from transformers import GPT2Model, GPT2ForSequenceClassification
|
||||
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Simple version #
|
||||
|
||||
class GPT2ClassificationHeadCustomSimple(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.n_embd
|
||||
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class GPT2ForSequenceClassificationCustomSimple(GPT2ForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.transformer = GPT2Model(config)
|
||||
self.score = GPT2ClassificationHeadCustomSimple(config)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
|
||||
# Version with custom forward 1 #
|
||||
|
||||
class GPT2ClassificationHeadCustom(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.n_embd
|
||||
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
# Get hidden states from second from the end
|
||||
hidden = kwargs['hidden_states'][-2]
|
||||
else:
|
||||
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
|
||||
x = self.dense_1_input(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
hidden = self.dense_1_hidden(hidden)
|
||||
hidden = torch.relu(hidden)
|
||||
hidden = self.dropout(hidden)
|
||||
|
||||
x = torch.cat((x, hidden), dim=2)
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.transformer = GPT2Model(config)
|
||||
self.score = GPT2ClassificationHeadCustom(config)
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
|
||||
|
||||
if input_ids is not None:
|
||||
batch_size, sequence_length = input_ids.shape[:2]
|
||||
else:
|
||||
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||||
|
||||
assert (
|
||||
self.config.pad_token_id is not None or batch_size == 1
|
||||
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
||||
)
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
322
roberta.py
Normal file
322
roberta.py
Normal file
@ -0,0 +1,322 @@
|
||||
from typing import Optional, Union, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
||||
from transformers import RobertaForSequenceClassification, RobertaModel
|
||||
from transformers.modeling_outputs import SequenceClassifierOutput
|
||||
|
||||
|
||||
# Simple version #
|
||||
|
||||
class RobertaClassificationHeadCustomSimple(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
|
||||
x = self.dense_1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustomSimple(config)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
|
||||
# Version with custom forward 1 #
|
||||
|
||||
class RobertaClassificationHeadCustom(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.use_hidden_states = config.use_hidden_states
|
||||
hidden_size = config.hidden_size
|
||||
if self.use_hidden_states:
|
||||
hidden_size *= 2
|
||||
|
||||
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
if self.use_hidden_states:
|
||||
x = torch.cat(
|
||||
(
|
||||
features[:, 0, :],
|
||||
# take <s> token (equiv. to [CLS]) from hidden states from second from the end
|
||||
kwargs['hidden_states'][-2][:, 0, :]
|
||||
),
|
||||
dim=1
|
||||
)
|
||||
else:
|
||||
x = features[:, 0, :] + kwargs['hidden_states'][-2][:, 0, :]
|
||||
del kwargs['hidden_states']
|
||||
else:
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
if self.use_hidden_states:
|
||||
x = torch.cat(
|
||||
(
|
||||
features[:, 0, :],
|
||||
torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
),
|
||||
dim=1
|
||||
)
|
||||
|
||||
x = self.dense_1(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustom(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustom(config)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.roberta(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = outputs[0]
|
||||
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
|
||||
# Version with custom forward 2 #
|
||||
|
||||
class RobertaClassificationHeadCustomAlternative(nn.Module):
|
||||
"""Head for sentence-level classification tasks."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
|
||||
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||
|
||||
def forward(self, features, **kwargs):
|
||||
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
|
||||
# take <s> token (equiv. to [CLS]) from hidden states from second from the end
|
||||
hidden = kwargs['hidden_states'][-2][:, 0, :]
|
||||
del kwargs['hidden_states']
|
||||
else:
|
||||
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
|
||||
|
||||
x = self.dense_1_input(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
hidden = self.dense_1_hidden(hidden)
|
||||
hidden = torch.relu(hidden)
|
||||
hidden = self.dropout(hidden)
|
||||
|
||||
x = torch.cat((x, hidden), dim=1)
|
||||
x = self.dense_2(x)
|
||||
x = torch.relu(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.out_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class RobertaForSequenceClassificationCustomAlternative(RobertaForSequenceClassification):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.num_labels = config.num_labels
|
||||
self.config = config
|
||||
|
||||
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||
self.classifier = RobertaClassificationHeadCustomAlternative(config)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
token_type_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.roberta(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = outputs[0]
|
||||
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
Loading…
Reference in New Issue
Block a user