from typing import Optional, Union, Tuple import torch from torch import nn from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss from transformers import RobertaForSequenceClassification, RobertaModel from transformers.modeling_outputs import SequenceClassifierOutput class LeakyHeadCustom(nn.Module): """Incorporates Leaky ReLU""" def __init__(self, config): super().__init__() hidden_size = config.hidden_size self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dense_1(x) x = torch.nn.LeakyReLU(x) x = self.dense_2(x) x = torch.nn.LeakyReLU(x) x = self.out_proj(x) return x # Simple version # class RobertaClassificationHeadCustomSimple(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() hidden_size = config.hidden_size self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dense_1(x) x = torch.relu(x) x = self.dropout(x) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustomSimple(config) # Initialize weights and apply final processing self.post_init() # Version with custom forward 1 # class RobertaClassificationHeadCustom(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.use_hidden_states = config.use_hidden_states hidden_size = config.hidden_size if self.use_hidden_states: hidden_size *= 2 self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None: if self.use_hidden_states: x = torch.cat( ( features[:, 0, :], # take token (equiv. to [CLS]) from hidden states from second from the end kwargs['hidden_states'][-2][:, 0, :] ), dim=1 ) else: x = features[:, 0, :] + kwargs['hidden_states'][-2][:, 0, :] del kwargs['hidden_states'] else: x = features[:, 0, :] # take token (equiv. to [CLS]) if self.use_hidden_states: x = torch.cat( ( features[:, 0, :], torch.zeros(x.size(), dtype=x.dtype, device=x.device) ), dim=1 ) x = self.dense_1(x) x = torch.relu(x) x = self.dropout(x) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustom(RobertaForSequenceClassification): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustom(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states or self.config.use_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Version with custom forward 2 # class RobertaClassificationHeadCustomAlternative(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() hidden_size = config.hidden_size self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size) self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(4 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None: # take token (equiv. to [CLS]) from hidden states from second from the end hidden = kwargs['hidden_states'][-2][:, 0, :] del kwargs['hidden_states'] else: hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device) x = self.dense_1_input(x) x = torch.relu(x) x = self.dropout(x) hidden = self.dense_1_hidden(hidden) hidden = torch.relu(hidden) hidden = self.dropout(hidden) x = torch.cat((x, hidden), dim=1) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustomAlternative(RobertaForSequenceClassification): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustomAlternative(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states or self.config.use_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )