from transformers import pipeline pipe = pipeline('text-classification', model="olczig/irony-polish-detection", tokenizer = "olczig/irony-polish-detection") def irony_prediction(data): result = pipe(data) return result def clear_data(data): data = [i.replace('#',''). replace('@',''). replace('\uf8ff',''). replace('\t',''). replace('\"',''). replace('\U000fe329',''). replace('\U000fe35b',''). replace('\U000fe4ef',''). replace('\U000fe341','') for i in data['sentences']] return data def count_predictions(predictions): l0 = 0 l1 = 0 all = {} for i in predictions: if i['label'] == 'LABEL_0': l0 += 1 if i['label'] == 'LABEL_1': l1 += 1 all['irony'] = l1 all['non_irony'] = l0 return all