36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
import torch
|
|
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
import sys
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")
|
|
|
|
for line in sys.stdin:
|
|
splitted_line = line.split("\t")
|
|
left_context = splitted_line[6].split(" ")[-1]
|
|
right_context = splitted_line[7].split(" ")[0]
|
|
|
|
word = "[MASK]"
|
|
|
|
text = f"{left_context} {word} {right_context}"
|
|
|
|
input_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt", max_length=512, truncation=True)
|
|
|
|
mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1][0]
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(input_ids)
|
|
predictions = outputs[0][0, mask_token_index].softmax(dim=0)
|
|
|
|
top_k = 500
|
|
top_k_tokens = torch.topk(predictions, top_k).indices.tolist()
|
|
result = ''
|
|
prob_sum = 0
|
|
for token in top_k_tokens:
|
|
word = tokenizer.convert_ids_to_tokens([token])[0]
|
|
prob = predictions[token].item()
|
|
prob_sum += prob
|
|
result += f"{word}:{prob} "
|
|
diff = 1.0 - prob_sum
|
|
result += f":{diff}"
|
|
print(result) |