challenging-america-word-ga.../run2.py
2023-04-11 08:30:15 +02:00

36 lines
1.1 KiB
Python

import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
import sys
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")
for line in sys.stdin:
splitted_line = line.split("\t")
left_context = splitted_line[6].split(" ")[-1]
right_context = splitted_line[7].split(" ")[0]
word = "[MASK]"
text = f"{left_context} {word} {right_context}"
input_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt", max_length=512, truncation=True)
mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1][0]
with torch.inference_mode():
outputs = model(input_ids)
predictions = outputs[0][0, mask_token_index].softmax(dim=0)
top_k = 500
top_k_tokens = torch.topk(predictions, top_k).indices.tolist()
result = ''
prob_sum = 0
for token in top_k_tokens:
word = tokenizer.convert_ids_to_tokens([token])[0]
prob = predictions[token].item()
prob_sum += prob
result += f"{word}:{prob} "
diff = 1.0 - prob_sum
result += f":{diff}"
print(result)