api
This commit is contained in:
parent
d51cae15b9
commit
f6c96a345f
56
engine.py
56
engine.py
@ -2,64 +2,72 @@ from simpful import *
|
||||
|
||||
FS = FuzzySystem()
|
||||
|
||||
# Define fuzzy sets for the variable # Define fuzzy sets for the variable
|
||||
# Define fuzzy sets for the variable
|
||||
# RELEASE_YEAR
|
||||
release_year_newer = TriangleFuzzySet(-68, -68, 0, term="newer")
|
||||
release_year_similar = TriangleFuzzySet(-68, 0, 68, term="similar")
|
||||
release_year_older = TriangleFuzzySet(0, 68, 68, term="older")
|
||||
|
||||
FS.add_linguistic_variable("RELEASE_YEAR", LinguisticVariable( [release_year_newer, release_year_similar, release_year_older], universe_of_discourse=[-136, 136] ))
|
||||
FS.add_linguistic_variable("RELEASE_YEAR",
|
||||
LinguisticVariable([release_year_newer, release_year_similar, release_year_older],
|
||||
universe_of_discourse=[-136, 136]))
|
||||
|
||||
# RUNTIME
|
||||
runtime_shorter = TriangleFuzzySet(-238, -238, 0, term="shorter")
|
||||
runtime_similar = TriangleFuzzySet(-238, 0, 238, term="similar")
|
||||
runtime_longer = TriangleFuzzySet(0, 238, 238, term="longer")
|
||||
|
||||
FS.add_linguistic_variable("RUNTIME", LinguisticVariable( [runtime_shorter, runtime_similar, runtime_longer], universe_of_discourse=[-476, 476] ))
|
||||
FS.add_linguistic_variable("RUNTIME", LinguisticVariable([runtime_shorter, runtime_similar, runtime_longer],
|
||||
universe_of_discourse=[-476, 476]))
|
||||
|
||||
# SEASONS
|
||||
seasons_less = TriangleFuzzySet(-42, -42, 0, term="less")
|
||||
seasons_similar = TriangleFuzzySet(-42, 0, 42, term="similar")
|
||||
seasons_more = TriangleFuzzySet(0, 42, 42, term="more")
|
||||
|
||||
FS.add_linguistic_variable("SEASONS", LinguisticVariable( [seasons_less, seasons_similar, seasons_more], universe_of_discourse=[-84, 84] ))
|
||||
FS.add_linguistic_variable("SEASONS", LinguisticVariable([seasons_less, seasons_similar, seasons_more],
|
||||
universe_of_discourse=[-84, 84]))
|
||||
|
||||
# GENRES
|
||||
genres_different = TriangleFuzzySet(-100, -100, 0, term="different")
|
||||
genres_similar = TriangleFuzzySet(-100, 0, 100, term="similar")
|
||||
genres_same = TriangleFuzzySet(0, 100, 100, term="same")
|
||||
|
||||
FS.add_linguistic_variable("GENRES", LinguisticVariable( [genres_different, genres_similar, genres_same], universe_of_discourse=[-200, 200] ))
|
||||
FS.add_linguistic_variable("GENRES", LinguisticVariable([genres_different, genres_similar, genres_same],
|
||||
universe_of_discourse=[-200, 200]))
|
||||
|
||||
# EMOTIONS
|
||||
emotions_different = TriangleFuzzySet(-4, -4, 0, term="different")
|
||||
emotions_similar = TriangleFuzzySet(-4, 0, 4, term="similar")
|
||||
emotions_same = TriangleFuzzySet(0, 4, 4, term="same")
|
||||
|
||||
FS.add_linguistic_variable("EMOTIONS", LinguisticVariable( [emotions_different, emotions_similar, emotions_same], universe_of_discourse=[-8, 8] ))
|
||||
FS.add_linguistic_variable("EMOTIONS", LinguisticVariable([emotions_different, emotions_similar, emotions_same],
|
||||
universe_of_discourse=[-8, 8]))
|
||||
|
||||
# RECOMENDATION
|
||||
low_recomendation = TriangleFuzzySet(0, 0, 50, term="low_recomendation")
|
||||
medium_recomendation = TriangleFuzzySet(0, 50, 100, term="medium_recomendation")
|
||||
high_recomendation = TriangleFuzzySet(0, 100, 100, term="high_recomendation")
|
||||
FS.add_linguistic_variable("RECOMENDATION", LinguisticVariable( [low_recomendation, medium_recomendation, high_recomendation], universe_of_discourse=[0, 200] ))
|
||||
# RECOMMENDATION
|
||||
low_recommendation = TriangleFuzzySet(0, 0, 50, term="low_recommendation")
|
||||
medium_recommendation = TriangleFuzzySet(0, 50, 100, term="medium_recommendation")
|
||||
high_recommendation = TriangleFuzzySet(0, 100, 100, term="high_recommendation")
|
||||
FS.add_linguistic_variable("RECOMMENDATION",
|
||||
LinguisticVariable([low_recommendation, medium_recommendation, high_recommendation],
|
||||
universe_of_discourse=[0, 200]))
|
||||
|
||||
# RULES
|
||||
RULE1 = "IF (RELEASE_YEAR IS older) AND (RUNTIME IS longer) AND (SEASONS IS more) THEN (RECOMENDATION IS low_recomendation)"
|
||||
RULE2 = "IF (EMOTIONS IS different) AND (GENRES IS different) THEN (RECOMENDATION IS low_recomendation)"
|
||||
RULE3 = "IF (RELEASE_YEAR IS newer) AND (RUNTIME IS similar) AND (SEASONS IS less) THEN (RECOMENDATION IS medium_recomendation)"
|
||||
RULE4 = "IF (EMOTIONS IS similar) AND (GENRES IS similar) THEN (RECOMENDATION IS medium_recomendation)"
|
||||
RULE5 = "IF (RELEASE_YEAR IS similar) AND (RUNTIME IS similar) AND (SEASONS IS similar) AND (EMOTIONS IS same) AND (GENRES IS same) THEN (RECOMENDATION IS high_recomendation)"
|
||||
RULE1 = "IF (RELEASE_YEAR IS older) AND (RUNTIME IS longer) AND (SEASONS IS more) THEN (RECOMMENDATION IS low_recommendation)"
|
||||
RULE2 = "IF (EMOTIONS IS different) AND (GENRES IS different) THEN (RECOMMENDATION IS low_recommendation)"
|
||||
RULE3 = "IF (RELEASE_YEAR IS newer) AND (RUNTIME IS similar) AND (SEASONS IS less) THEN (RECOMMENDATION IS medium_recommendation)"
|
||||
RULE4 = "IF (EMOTIONS IS similar) AND (GENRES IS similar) THEN (RECOMMENDATION IS medium_recommendation)"
|
||||
RULE5 = "IF (RELEASE_YEAR IS similar) AND (RUNTIME IS similar) AND (SEASONS IS similar) AND (EMOTIONS IS same) AND (GENRES IS same) THEN (RECOMMENDATION IS high_recommendation)"
|
||||
# Z regułami trzeba eksperymentować, można porównywać ze scorem dla sprawdzania skuteczności
|
||||
|
||||
FS.add_rules([RULE1, RULE2, RULE3, RULE4, RULE5])
|
||||
|
||||
FS.set_variable("RELEASE_YEAR", -12.0)
|
||||
FS.set_variable("RUNTIME", -10.0)
|
||||
FS.set_variable("SEASONS", -2.0)
|
||||
FS.set_variable("GENRES", 50.0)
|
||||
FS.set_variable("EMOTIONS", 1.0)
|
||||
# FS.set_variable("RELEASE_YEAR", -12.0)
|
||||
# FS.set_variable("RUNTIME", -10.0)
|
||||
# FS.set_variable("SEASONS", -2.0)
|
||||
# FS.set_variable("GENRES", 50.0)
|
||||
# FS.set_variable("EMOTIONS", 1.0)
|
||||
#
|
||||
# print(FS.inference(["RECOMMENDATION"]))
|
||||
|
||||
print(FS.inference(["RECOMENDATION"]))
|
||||
|
||||
FS.produce_figure(outputfile='visualize_terms.pdf')
|
||||
# FS.produce_figure(outputfile='visualize_terms.pdf')
|
||||
|
61
main.py
Normal file
61
main.py
Normal file
@ -0,0 +1,61 @@
|
||||
"""
|
||||
!pip install scikit-learn
|
||||
!pip install pandas
|
||||
!pip install fastapi
|
||||
!pip install "uvicorn[standard]"
|
||||
!uvicorn main:app --reload
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from fastapi import FastAPI
|
||||
from scipy.spatial.distance import cosine
|
||||
from sklearn.preprocessing import MultiLabelBinarizer
|
||||
|
||||
from engine import FS
|
||||
|
||||
app = FastAPI()
|
||||
data = pd.DataFrame()
|
||||
|
||||
|
||||
@app.on_event('startup')
|
||||
async def startup_event():
|
||||
global data
|
||||
data = pd.read_csv('processed_data.csv', index_col='id', converters={'genres': pd.eval})
|
||||
all_genres = data.genres.explode().unique()
|
||||
mlb = MultiLabelBinarizer()
|
||||
mlb.fit([all_genres])
|
||||
data['genres'] = data['genres'].apply(lambda x: mlb.transform([x])[0])
|
||||
data['emotions'] = data[['Happy', 'Angry', 'Surprise', 'Sad', 'Fear']].values.tolist()
|
||||
|
||||
|
||||
@app.get('/score/{first_id}/{second_id}')
|
||||
def rec_score(first_id: str, second_id: str):
|
||||
try:
|
||||
first = data.loc[first_id]
|
||||
except KeyError:
|
||||
return {'error': f'{first_id} is not a valid id'}
|
||||
try:
|
||||
second = data.loc[second_id]
|
||||
except KeyError:
|
||||
return {'error': f'{second_id} is not a valid id'}
|
||||
|
||||
year_diff = int(first['release_year'] - second['release_year'])
|
||||
FS.set_variable('RELEASE_YEAR', year_diff)
|
||||
|
||||
runtime_diff = int(first['runtime'] - second['runtime'])
|
||||
FS.set_variable('RUNTIME', runtime_diff)
|
||||
|
||||
if not (np.isnan(first['seasons']) or np.isnan(second['seasons'])):
|
||||
season_diff = int(first['seasons'] - second['seasons'])
|
||||
FS.set_variable('SEASONS', season_diff)
|
||||
else:
|
||||
FS.set_variable('SEASONS', 0)
|
||||
|
||||
genre_diff = 1 - cosine(first['genres'], second['genres'])
|
||||
FS.set_variable('GENRES', genre_diff)
|
||||
|
||||
emotion_diff = 1 - cosine(first['emotions'], second['emotions'])
|
||||
FS.set_variable('EMOTIONS', emotion_diff)
|
||||
|
||||
return {'score': FS.inference(['RECOMMENDATION'])}
|
Loading…
Reference in New Issue
Block a user