fuzzy-logic-movies/main.py
2023-01-07 22:35:00 +01:00

89 lines
2.5 KiB
Python

"""
!pip install scikit-learn
!pip install pandas
!pip install fastapi
!pip install "uvicorn[standard]"
!uvicorn main:app --reload
"""
import numpy as np
import pandas as pd
from fastapi import FastAPI
from scipy.spatial.distance import cosine
from sklearn.preprocessing import MultiLabelBinarizer
from engine import FS
app = FastAPI()
data = pd.DataFrame()
def inference(first_id: str, second_id: str):
first = data.loc[first_id]
second = data.loc[second_id]
year_diff = int(first['release_year'] - second['release_year'])
FS.set_variable('RELEASE_YEAR', year_diff)
runtime_diff = int(first['runtime'] - second['runtime'])
FS.set_variable('RUNTIME', runtime_diff)
if not (np.isnan(first['seasons']) or np.isnan(second['seasons'])):
season_diff = int(first['seasons'] - second['seasons'])
FS.set_variable('SEASONS', season_diff)
else:
FS.set_variable('SEASONS', 0)
genre_diff = 1 - cosine(first['genres'], second['genres'])
FS.set_variable('GENRES', genre_diff)
emotion_diff = 1 - cosine(first['emotions'], second['emotions'])
FS.set_variable('EMOTIONS', emotion_diff)
return FS.inference(['RECOMMENDATION'])
@app.on_event('startup')
async def startup_event():
global data
data = pd.read_csv('processed_data.csv', index_col='id', converters={'genres': pd.eval})
all_genres = data.genres.explode().unique()
mlb = MultiLabelBinarizer()
mlb.fit([all_genres])
data['genres'] = data['genres'].apply(lambda x: mlb.transform([x])[0])
data['emotions'] = data[['Happy', 'Angry', 'Surprise', 'Sad', 'Fear']].values.tolist()
@app.get('/score/{first_id}/{second_id}')
def rec_score(first_id: str, second_id: str):
try:
first = data.loc[first_id]
except KeyError:
return {'error': f'{first_id} is not a valid id'}
try:
second = data.loc[second_id]
except KeyError:
return {'error': f'{second_id} is not a valid id'}
return inference(first_id, second_id)
@app.get('/recs/{production_id}')
async def recs(production_id: str, count: int | None):
try:
first = data.loc[production_id]
except KeyError:
return {'error': f'{production_id} is not a valid id'}
scores = []
for index, row in data.iterrows():
if str(index) == production_id:
continue
scores.append((index, inference(production_id, str(index))['RECOMMENDATION']))
scores = [idx[0] for idx in sorted(scores, key=lambda x: x[1], reverse=True)[:count]]
return list(scores)