Jenkinsfile and Dockerfile modify for s444498-dvc pipeline

This commit is contained in:
Wirusik 2022-06-05 18:59:04 +02:00
parent d4d89d25a8
commit 89d8c6e9e9
10 changed files with 127 additions and 12 deletions

View File

@ -1,5 +1,5 @@
[core]
autostage = true
remote = ium_ssh_remote
['remote "ium_ssh_remote"']
url = ssh://ium-sftp@tzietkiewicz.vm.wmi.amu.edu.pl
url = ssh://tzietkiewicz.vm.wmi.amu.edu.pl:/home/ium-sftp
user = ium-sftp

3
.gitignore vendored
View File

@ -1,6 +1,7 @@
*.csv
*.zip
*.png
*.txt
__pycache__
/prepared
model.zip
sacred_runs/1/model.zip

View File

@ -19,6 +19,8 @@ RUN pip3 install matplotlib
RUN pip3 install torchvision
RUN pip3 install sacred
RUN pip3 install pymongo
RUN pip3 install dvc
RUN pip3 install 'dvc[ssh]' paramiko
# Args
ARG KAGGLE_USERNAME
@ -31,5 +33,8 @@ WORKDIR /app
# Copy everything from jenkins to /app
COPY . .
# Create user
RUN useradd -r -u 111 jenkins
# Create kaggle catalog for authenticate
RUN mkdir /.kaggle/ && chmod o+w /.kaggle

42
Jenkinsfile-dvc Normal file
View File

@ -0,0 +1,42 @@
pipeline {
agent {
dockerfile {
args '-e KAGGLE_USERNAME=${params.KAGGLE_USERNAME} -e KAGGLE_KEY=${params.KAGGLE_KEY}'
}
}
parameters {
string (
defaultValue: 'wirus006',
description: 'Kaggle username',
name: 'KAGGLE_USERNAME',
trim: false
)
password (
defaultValue: '',
description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials',
name: 'KAGGLE_KEY'
)
}
stages {
stage("Git clone") {
steps {
checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: 's444498', url: 'https://git.wmi.amu.edu.pl/s444498/ium_444498.git']]])
}
}
stage("Run DVC") {
steps{
withCredentials(
[sshUserPrivateKey(credentialsId: '48ac7004-216e-4260-abba-1fe5db753e18', keyFileVariable: 'IUM_SFTP_KEY', passphraseVariable: '', usernameVariable: 'USER')]) {
sh 'dvc remote modify --local ium_ssh_remote keyfile $IUM_SFTP_KEY'
sh 'dvc remote modify --local ium_ssh_remote password IUM@2021'
sh 'dvc remote list'
sh 'cat .dvc/config'
sh 'cat .dvc/config.local'
sh 'dvc pull'
sh 'ls -al'
sh 'dvc repro'
}
}
}
}
}

BIN
atp-and-wta-tennis-data.zip Normal file

Binary file not shown.

View File

@ -1,4 +1,4 @@
outs:
- md5: 16cefb2b04f963bcf0fbb6f256496219
size: 2466716
- md5: d32a6cf1889199066cace68f8f56890b
size: 2431316
path: atp_dev.csv

View File

@ -1,4 +1,4 @@
outs:
- md5: b5b50c11ef644df2ef799ca56e7d1ced
size: 2466156
- md5: 389fd474d4db00db1c113683177d5880
size: 2430180
path: atp_test.csv

View File

@ -1,4 +1,4 @@
outs:
- md5: 314cd14a051bd61bf7e1f3a160c02dd2
size: 7408451
- md5: 50969b14a70db98c17a62cf7d99edb5a
size: 7302503
path: atp_train.csv

View File

@ -1,5 +1,5 @@
stages:
prepare:
cmd: python init.py
train:
cmd: python neutral_network.py
cmd: python3 neutral_network.py
prepare:
cmd: python3 init2.py

67
init2.py Normal file
View File

@ -0,0 +1,67 @@
import subprocess
from os.path import exists
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib
from pathlib import Path
import math
# Inicjalizacja danych
file_exists = exists("./df_atp.csv")
if not file_exists:
subprocess.run(["unzip", "-o", "atp-and-wta-tennis-data.zip"])
atp_data = pd.read_csv("df_atp.csv")
# Średnia ilość gemów w pierwszym secie zwycięzców meczu
print(atp_data[["Winner", "W1"]].mean())
# Minimalna ilość wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].min())
# Maksymalna ilość wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].max())
# Odchylenie standardowe wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].std())
# Mediana wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].median())
# Zmiana nazwy nienazwanej kolumny
atp_data.rename(columns={"Unnamed: 0": "ID"}, inplace=True)
# Jak często kto był zwycięzcą
print(atp_data.groupby("Winner")["ID"].nunique())
# Normalizacja rund -1: Finał, -2: Półfinał, -3: Ćwiartka, -4: Każdy z każdym
# 1: pierwsza runda, 2: druga runda, 3: trzecia runda, 4: czwarta runda
atp_data.loc[atp_data["Round"] == "The Final", "Round"] = -1
atp_data.loc[atp_data["Round"] == "Semifinals", "Round"] = -2
atp_data.loc[atp_data["Round"] == "Quarterfinals", "Round"] = -3
atp_data.loc[atp_data["Round"] == "Round Robin", "Round"] = -4
atp_data.loc[atp_data["Round"] == "1st Round", "Round"] = 1
atp_data.loc[atp_data["Round"] == "2nd Round", "Round"] = 2
atp_data.loc[atp_data["Round"] == "3rd Round", "Round"] = 3
atp_data.loc[atp_data["Round"] == "4th Round", "Round"] = 4
print(atp_data["Round"])
# Czyszczenie: W polu z datą zamienimy ######## na pustego stringa
atp_data.loc[atp_data["Date"] == "########", "Date"] = ""
print(atp_data["Date"])
# Podział na podzbiory: trenujący, testowy, walidujący w proporcjach 6:2:2
atp_train, atp_test = train_test_split(atp_data, test_size=0.4, random_state=1)
atp_dev, atp_test = train_test_split(atp_test, test_size=0.5, random_state=1)
# Wielkość zbioru i podzbiorów
print("\nElements of total set: " + str(len(atp_data)))
print("\nElements of test set: " + str(len(atp_test)))
print("\nElements of dev set: " + str(len(atp_dev)))
print("\nElements of train set: " + str(len(atp_train)))
# Stworzenie plików z danymi trenującymi i testowymi
atp_test.to_csv("atp_test.csv", encoding="utf-8", index=False)
atp_dev.to_csv("atp_dev.csv", encoding="utf-8", index=False)
atp_train.to_csv("atp_train.csv", encoding="utf-8", index=False)