generate model by simple neutral network
This commit is contained in:
parent
866270cb82
commit
f1ee669eb6
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,5 @@
|
||||
df_atp.csv
|
||||
df_wta.csv
|
||||
atp-and-wta-tennis-data.zip
|
||||
atp-and-wta-tennis-data.zip
|
||||
data
|
||||
model.zip
|
||||
|
11
init.py
11
init.py
@ -4,6 +4,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
import matplotlib
|
||||
from pathlib import Path
|
||||
|
||||
# Inicjalizacja danych
|
||||
|
||||
@ -73,3 +74,13 @@ print("\nElements of total set: " + str(len(atp_data)))
|
||||
print("\nElements of test set: " + str(len(atp_test)))
|
||||
print("\nElements of dev set: " + str(len(atp_dev)))
|
||||
print("\nElements of train set: " + str(len(atp_train)))
|
||||
|
||||
# Stworzenie plików z danymi trenującymi i testowymi
|
||||
|
||||
filepath1 = Path('data/atp_test.csv')
|
||||
filepath2 = Path('data/atp_train.csv')
|
||||
filepath1.parent.mkdir(parents=True, exist_ok=True)
|
||||
filepath2.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
atp_test.to_csv(filepath1)
|
||||
atp_train.to_csv(filepath2)
|
115
neutral_network.py
Normal file
115
neutral_network.py
Normal file
@ -0,0 +1,115 @@
|
||||
from ast import arg
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
import argparse
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
default_batch_size = 64
|
||||
default_epochs = 4
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
class AtpDataset(Dataset):
|
||||
def __init__(self, file_name):
|
||||
df = pd.read_csv(file_name)
|
||||
|
||||
# Loser avg and Winner avg
|
||||
x = df.iloc[:, 4].values
|
||||
y = df.iloc[:, 3].values
|
||||
|
||||
self.x_train = torch.from_numpy(x)
|
||||
self.y_train = torch.from_numpy(y)
|
||||
self.x_train.type(torch.LongTensor)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.y_train)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.x_train[idx].float(), self.y_train[idx].float()
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(1, 64),
|
||||
nn.ReLU(),
|
||||
nn.Linear(64, 32),
|
||||
nn.ReLU(),
|
||||
nn.Linear(32, 1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), -1)
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
def train(dataloader, model, loss_fn, optimizer):
|
||||
size = len(dataloader.dataset)
|
||||
model.train()
|
||||
for batch, (X, y) in enumerate(dataloader):
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X)
|
||||
loss = loss_fn(pred, y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch % 100 == 0:
|
||||
loss, current = loss.item(), batch * len(X)
|
||||
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
|
||||
|
||||
|
||||
def test(dataloader, model, loss_fn):
|
||||
num_batches = len(dataloader)
|
||||
model.eval()
|
||||
test_loss, correct = 0, 0
|
||||
with torch.no_grad():
|
||||
for X, y in dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X)
|
||||
test_loss += loss_fn(pred, y).item()
|
||||
test_loss /= num_batches
|
||||
print(f"Avg loss (using {loss_fn}): {test_loss:>8f} \n")
|
||||
return test_loss
|
||||
|
||||
|
||||
def setup_args():
|
||||
args_parser = argparse.ArgumentParser(prefix_chars='-')
|
||||
args_parser.add_argument('-b', '--batchSize', type=int, default=default_batch_size)
|
||||
args_parser.add_argument('-e', '--epochs', type=int, default=default_epochs)
|
||||
return args_parser.parse_args()
|
||||
|
||||
|
||||
print(f"Using {device} device")
|
||||
|
||||
args = setup_args()
|
||||
batch_size = args.batchSize
|
||||
|
||||
plant_test = AtpDataset('data/atp_test.csv')
|
||||
plant_train = AtpDataset('data/atp_train.csv')
|
||||
|
||||
train_dataloader = DataLoader(plant_train, batch_size=batch_size)
|
||||
test_dataloader = DataLoader(plant_test, batch_size=batch_size)
|
||||
|
||||
for i, (data, labels) in enumerate(train_dataloader):
|
||||
print(data.shape, labels.shape)
|
||||
print(data, labels)
|
||||
break
|
||||
|
||||
model = MLP()
|
||||
print(model)
|
||||
|
||||
loss_fn = nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
epochs = args.epochs
|
||||
|
||||
for t in range(epochs):
|
||||
print(f"Epoch {t + 1}\n-------------------------------")
|
||||
train(train_dataloader, model, loss_fn, optimizer)
|
||||
test(test_dataloader, model, loss_fn)
|
||||
print("Finish!")
|
||||
|
||||
torch.save(model.state_dict(), './model.zip')
|
||||
print("Model saved in ./model.zip file.")
|
Loading…
Reference in New Issue
Block a user