generate model by simple neutral network

This commit is contained in:
Wirusik 2022-05-06 18:39:36 +02:00
parent 866270cb82
commit f1ee669eb6
3 changed files with 129 additions and 1 deletions

4
.gitignore vendored
View File

@ -1,3 +1,5 @@
df_atp.csv df_atp.csv
df_wta.csv df_wta.csv
atp-and-wta-tennis-data.zip atp-and-wta-tennis-data.zip
data
model.zip

11
init.py
View File

@ -4,6 +4,7 @@ import pandas as pd
import numpy as np import numpy as np
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
import matplotlib import matplotlib
from pathlib import Path
# Inicjalizacja danych # Inicjalizacja danych
@ -73,3 +74,13 @@ print("\nElements of total set: " + str(len(atp_data)))
print("\nElements of test set: " + str(len(atp_test))) print("\nElements of test set: " + str(len(atp_test)))
print("\nElements of dev set: " + str(len(atp_dev))) print("\nElements of dev set: " + str(len(atp_dev)))
print("\nElements of train set: " + str(len(atp_train))) print("\nElements of train set: " + str(len(atp_train)))
# Stworzenie plików z danymi trenującymi i testowymi
filepath1 = Path('data/atp_test.csv')
filepath2 = Path('data/atp_train.csv')
filepath1.parent.mkdir(parents=True, exist_ok=True)
filepath2.parent.mkdir(parents=True, exist_ok=True)
atp_test.to_csv(filepath1)
atp_train.to_csv(filepath2)

115
neutral_network.py Normal file
View File

@ -0,0 +1,115 @@
from ast import arg
import numpy as np
import pandas as pd
import torch
import argparse
from torch import nn
from torch.utils.data import DataLoader, Dataset
default_batch_size = 64
default_epochs = 4
device = "cuda" if torch.cuda.is_available() else "cpu"
class AtpDataset(Dataset):
def __init__(self, file_name):
df = pd.read_csv(file_name)
# Loser avg and Winner avg
x = df.iloc[:, 4].values
y = df.iloc[:, 3].values
self.x_train = torch.from_numpy(x)
self.y_train = torch.from_numpy(y)
self.x_train.type(torch.LongTensor)
def __len__(self):
return len(self.y_train)
def __getitem__(self, idx):
return self.x_train[idx].float(), self.y_train[idx].float()
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU(),
nn.Linear(32, 1),
)
def forward(self, x):
x = x.view(x.size(0), -1)
return self.layers(x)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Avg loss (using {loss_fn}): {test_loss:>8f} \n")
return test_loss
def setup_args():
args_parser = argparse.ArgumentParser(prefix_chars='-')
args_parser.add_argument('-b', '--batchSize', type=int, default=default_batch_size)
args_parser.add_argument('-e', '--epochs', type=int, default=default_epochs)
return args_parser.parse_args()
print(f"Using {device} device")
args = setup_args()
batch_size = args.batchSize
plant_test = AtpDataset('data/atp_test.csv')
plant_train = AtpDataset('data/atp_train.csv')
train_dataloader = DataLoader(plant_train, batch_size=batch_size)
test_dataloader = DataLoader(plant_test, batch_size=batch_size)
for i, (data, labels) in enumerate(train_dataloader):
print(data.shape, labels.shape)
print(data, labels)
break
model = MLP()
print(model)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
epochs = args.epochs
for t in range(epochs):
print(f"Epoch {t + 1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Finish!")
torch.save(model.state_dict(), './model.zip')
print("Model saved in ./model.zip file.")