ium_444498/init.py
Wirusik 9b71dc20d6
All checks were successful
s444498-evaluation/pipeline/head This commit looks good
s444498-training/pipeline/head This commit looks good
evaluate result not nan
2022-05-08 23:39:24 +02:00

71 lines
2.8 KiB
Python

import subprocess
from os.path import exists
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib
from pathlib import Path
import math
# Inicjalizacja danych
file_exists = exists("./df_atp.csv")
if not file_exists:
subprocess.run(
["kaggle", "datasets", "download", "-d", "hakeem/atp-and-wta-tennis-data"]
)
subprocess.run(["unzip", "-o", "atp-and-wta-tennis-data.zip"])
atp_data = pd.read_csv("df_atp.csv")
# Średnia ilość gemów w pierwszym secie zwycięzców meczu
print(atp_data[["Winner", "W1"]].mean())
# Minimalna ilość wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].min())
# Maksymalna ilość wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].max())
# Odchylenie standardowe wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].std())
# Mediana wygranych gemów w pierwszym secie osób wygrywających mecz
print(atp_data[["Winner", "W1"]].median())
# Zmiana nazwy nienazwanej kolumny
atp_data.rename(columns={"Unnamed: 0": "ID"}, inplace=True)
# Jak często kto był zwycięzcą
print(atp_data.groupby("Winner")["ID"].nunique())
# Normalizacja rund -1: Finał, -2: Półfinał, -3: Ćwiartka, -4: Każdy z każdym
# 1: pierwsza runda, 2: druga runda, 3: trzecia runda, 4: czwarta runda
atp_data.loc[atp_data["Round"] == "The Final", "Round"] = -1
atp_data.loc[atp_data["Round"] == "Semifinals", "Round"] = -2
atp_data.loc[atp_data["Round"] == "Quarterfinals", "Round"] = -3
atp_data.loc[atp_data["Round"] == "Round Robin", "Round"] = -4
atp_data.loc[atp_data["Round"] == "1st Round", "Round"] = 1
atp_data.loc[atp_data["Round"] == "2nd Round", "Round"] = 2
atp_data.loc[atp_data["Round"] == "3rd Round", "Round"] = 3
atp_data.loc[atp_data["Round"] == "4th Round", "Round"] = 4
print(atp_data["Round"])
# Czyszczenie: W polu z datą zamienimy ######## na pustego stringa
atp_data.loc[atp_data["Date"] == "########", "Date"] = ""
print(atp_data["Date"])
# Podział na podzbiory: trenujący, testowy, walidujący w proporcjach 6:2:2
atp_train, atp_test = train_test_split(atp_data, test_size=0.4, random_state=1)
atp_dev, atp_test = train_test_split(atp_test, test_size=0.5, random_state=1)
# Wielkość zbioru i podzbiorów
print("\nElements of total set: " + str(len(atp_data)))
print("\nElements of test set: " + str(len(atp_test)))
print("\nElements of dev set: " + str(len(atp_dev)))
print("\nElements of train set: " + str(len(atp_train)))
# Stworzenie plików z danymi trenującymi i testowymi
atp_test.to_csv("atp_test.csv", encoding="utf-8", index=False)
atp_dev.to_csv("atp_dev.csv", encoding="utf-8", index=False)
atp_train.to_csv("atp_train.csv", encoding="utf-8", index=False)