data input correction and implement butter_lowpass_filter

This commit is contained in:
Mateusz Tylka 2023-08-18 11:51:44 +02:00
parent 8d17ca67e6
commit ac8d1788e4
3 changed files with 47 additions and 7 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 31 KiB

View File

@ -3,6 +3,7 @@ from numpy.linalg import inv
import matplotlib.pyplot as plt
from math import cos, sin, tan, asin, pi
import pandas as pd
from scipy.signal import butter, filtfilt
def get_data(i, data):
x = data[0][i] # (41500, 1)
@ -87,23 +88,54 @@ def Euler_EKF(z, rates, dt):
psi = x[2]
return phi, theta, psi
def butter_lowpass_filter(data, cutoff, fs, order):
nyq = (0.5 * fs) # Nyquist Frequency
normal_cutoff = cutoff / nyq
# Get the filter coefficients
b, a = butter(order, normal_cutoff, btype='low', analog=False)
y = filtfilt(b, a, data)
return y
def normalize_data_vector(data, division):
return [i/division for i in list(data)]
H, Q, R = None, None, None
x, P = None, None
firstRun = True
division_param = 32768
# Filter requirements.
T = 5.0 # Sample Period
fs = 30.0 # sample rate, Hz
cutoff = 2 # desired cutoff frequency of the filter, Hz, slightly higher than actual 1.2 Hz
order = 2 # sin wave can be approx represented as quadratic
df = pd.read_csv('raw_data_6d.xls', sep='\t')
gyroX = normalize_data_vector(df['%GyroX'].values, division_param)
gyroY = normalize_data_vector(df['%GyroX'].values, division_param)
gyroZ = normalize_data_vector(df['%GyroX'].values, division_param)
gyroX = df['%GyroX'].values
gyroY = df['GyroY'].values
gyroZ = df['GyroZ'].values
acceX = normalize_data_vector(df['AcceX'].values, division_param)
acceY = normalize_data_vector(df['AcceY'].values, division_param)
acceZ = normalize_data_vector(df['AcceZ'].values, division_param)
acceX = df['AcceX'].values
acceY = df['AcceY'].values
acceZ = df['AcceZ'].values
gyroX = normalize_data_vector(gyroX, division_param)
gyroY = normalize_data_vector(gyroY, division_param)
gyroZ = normalize_data_vector(gyroZ, division_param)
acceX = normalize_data_vector(acceX, division_param)
acceY = normalize_data_vector(acceY, division_param)
acceZ = normalize_data_vector(acceZ, division_param)
# gyroX = butter_lowpass_filter(gyroX, cutoff, fs, order)
# gyroY = butter_lowpass_filter(gyroY, cutoff, fs, order)
# gyroZ = butter_lowpass_filter(gyroZ, cutoff, fs, order)
# acceX = butter_lowpass_filter(acceX, cutoff, fs, order)
# acceY = butter_lowpass_filter(acceY, cutoff, fs, order)
# acceZ = butter_lowpass_filter(acceZ, cutoff, fs, order)
gyro_data = [gyroX, gyroY, gyroZ]
acce_data = [acceX, acceY, acceZ]
@ -146,4 +178,12 @@ plt.subplot(133)
plt.plot(t, PsiSaved)
plt.xlabel('Time [Sec]')
plt.ylabel('Psi angle [deg]')
'''
'''
n =int(T * fs)
# sin wave
sig = np.sin(1.2*2*np.pi*n)# Lets add some noise
noise = 1.5*np.cos(9*2*np.pi*n) + 0.5*np.sin(12.0*2*np.pi*n)
data = sig + noise
print(data)