data input correction and implement butter_lowpass_filter

This commit is contained in:
Mateusz Tylka 2023-08-18 11:51:44 +02:00
parent 8d17ca67e6
commit ac8d1788e4
3 changed files with 47 additions and 7 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 31 KiB

View File

@ -3,6 +3,7 @@ from numpy.linalg import inv
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from math import cos, sin, tan, asin, pi from math import cos, sin, tan, asin, pi
import pandas as pd import pandas as pd
from scipy.signal import butter, filtfilt
def get_data(i, data): def get_data(i, data):
x = data[0][i] # (41500, 1) x = data[0][i] # (41500, 1)
@ -87,23 +88,54 @@ def Euler_EKF(z, rates, dt):
psi = x[2] psi = x[2]
return phi, theta, psi return phi, theta, psi
def butter_lowpass_filter(data, cutoff, fs, order):
nyq = (0.5 * fs) # Nyquist Frequency
normal_cutoff = cutoff / nyq
# Get the filter coefficients
b, a = butter(order, normal_cutoff, btype='low', analog=False)
y = filtfilt(b, a, data)
return y
def normalize_data_vector(data, division): def normalize_data_vector(data, division):
return [i/division for i in list(data)] return [i/division for i in list(data)]
H, Q, R = None, None, None H, Q, R = None, None, None
x, P = None, None x, P = None, None
firstRun = True firstRun = True
division_param = 32768 division_param = 32768
# Filter requirements.
T = 5.0 # Sample Period
fs = 30.0 # sample rate, Hz
cutoff = 2 # desired cutoff frequency of the filter, Hz, slightly higher than actual 1.2 Hz
order = 2 # sin wave can be approx represented as quadratic
df = pd.read_csv('raw_data_6d.xls', sep='\t') df = pd.read_csv('raw_data_6d.xls', sep='\t')
gyroX = normalize_data_vector(df['%GyroX'].values, division_param) gyroX = df['%GyroX'].values
gyroY = normalize_data_vector(df['%GyroX'].values, division_param) gyroY = df['GyroY'].values
gyroZ = normalize_data_vector(df['%GyroX'].values, division_param) gyroZ = df['GyroZ'].values
acceX = normalize_data_vector(df['AcceX'].values, division_param) acceX = df['AcceX'].values
acceY = normalize_data_vector(df['AcceY'].values, division_param) acceY = df['AcceY'].values
acceZ = normalize_data_vector(df['AcceZ'].values, division_param) acceZ = df['AcceZ'].values
gyroX = normalize_data_vector(gyroX, division_param)
gyroY = normalize_data_vector(gyroY, division_param)
gyroZ = normalize_data_vector(gyroZ, division_param)
acceX = normalize_data_vector(acceX, division_param)
acceY = normalize_data_vector(acceY, division_param)
acceZ = normalize_data_vector(acceZ, division_param)
# gyroX = butter_lowpass_filter(gyroX, cutoff, fs, order)
# gyroY = butter_lowpass_filter(gyroY, cutoff, fs, order)
# gyroZ = butter_lowpass_filter(gyroZ, cutoff, fs, order)
# acceX = butter_lowpass_filter(acceX, cutoff, fs, order)
# acceY = butter_lowpass_filter(acceY, cutoff, fs, order)
# acceZ = butter_lowpass_filter(acceZ, cutoff, fs, order)
gyro_data = [gyroX, gyroY, gyroZ] gyro_data = [gyroX, gyroY, gyroZ]
acce_data = [acceX, acceY, acceZ] acce_data = [acceX, acceY, acceZ]
@ -146,4 +178,12 @@ plt.subplot(133)
plt.plot(t, PsiSaved) plt.plot(t, PsiSaved)
plt.xlabel('Time [Sec]') plt.xlabel('Time [Sec]')
plt.ylabel('Psi angle [deg]') plt.ylabel('Psi angle [deg]')
''' '''
n =int(T * fs)
# sin wave
sig = np.sin(1.2*2*np.pi*n)# Lets add some noise
noise = 1.5*np.cos(9*2*np.pi*n) + 0.5*np.sin(12.0*2*np.pi*n)
data = sig + noise
print(data)