Merge pull request 'comparison' (#3) from comparison into main
Reviewed-on: #3
This commit is contained in:
commit
0dafe720b9
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
data
|
||||
.idea
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
|
42
comparisons.py
Normal file
42
comparisons.py
Normal file
@ -0,0 +1,42 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from skimage.metrics import structural_similarity
|
||||
|
||||
def histogram_comparison(data_a: np.ndarray, data_b: np.ndarray) -> dict:
|
||||
hsv_a = cv2.cvtColor(data_a, cv2.COLOR_BGR2HSV)
|
||||
hsv_b = cv2.cvtColor(data_b, cv2.COLOR_BGR2HSV)
|
||||
|
||||
histSize = [50, 60]
|
||||
hue_ranges = [0, 180]
|
||||
sat_ranges = [0, 256]
|
||||
channels = [0, 1]
|
||||
ranges = hue_ranges + sat_ranges
|
||||
|
||||
hist_a = cv2.calcHist([hsv_a], channels, None, histSize, ranges, accumulate=False)
|
||||
cv2.normalize(hist_a, hist_a, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
|
||||
hist_b = cv2.calcHist([hsv_b], channels, None, histSize, ranges, accumulate=False)
|
||||
cv2.normalize(hist_b, hist_b, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
|
||||
|
||||
return {
|
||||
'correlation': cv2.compareHist(hist_a, hist_b, 0),
|
||||
'chi-square': cv2.compareHist(hist_a, hist_b, 1),
|
||||
'intersection': cv2.compareHist(hist_a, hist_b, 2),
|
||||
'bhattacharyya-distance': cv2.compareHist(hist_a, hist_b, 3),
|
||||
}
|
||||
|
||||
|
||||
def structural_similarity_index(data_a: np.ndarray, data_b: np.ndarray) -> float:
|
||||
return structural_similarity(cv2.cvtColor(data_a, cv2.COLOR_BGR2GRAY), cv2.cvtColor(data_b, cv2.COLOR_BGR2GRAY))
|
||||
|
||||
|
||||
def euclidean_distance(data_a: np.ndarray, data_b: np.ndarray) -> float:
|
||||
gray_a = cv2.cvtColor(data_a, cv2.COLOR_BGR2GRAY)
|
||||
histogram_a = cv2.calcHist([gray_a], [0], None, [256], [0, 256])
|
||||
|
||||
gray_b = cv2.cvtColor(data_b, cv2.COLOR_BGR2GRAY)
|
||||
histogram_b = cv2.calcHist([gray_b], [0], None, [256], [0, 256])
|
||||
result, i = [0.], 0
|
||||
while i < len(histogram_a) and i < len(histogram_b):
|
||||
result += (histogram_a[i] - histogram_b[i]) ** 2
|
||||
i += 1
|
||||
return result[0] ** (1 / 2)
|
6693
haarcascades/lbpcascade_animeface.xml
Normal file
6693
haarcascades/lbpcascade_animeface.xml
Normal file
File diff suppressed because it is too large
Load Diff
48
main.py
48
main.py
@ -1,10 +1,12 @@
|
||||
# Allows imports from the style transfer submodule
|
||||
import sys
|
||||
sys.path.append('DCT-Net')
|
||||
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
|
||||
|
||||
# Allows imports from the style transfer submodule
|
||||
sys.path.append('DCT-Net')
|
||||
|
||||
from source.cartoonize import Cartoonizer
|
||||
|
||||
@ -13,28 +15,46 @@ def load_source(filename: str) -> np.ndarray:
|
||||
return cv2.imread(filename)[..., ::-1]
|
||||
|
||||
|
||||
def find_and_crop_face(data: np.ndarray) -> np.ndarray:
|
||||
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
|
||||
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
|
||||
face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
|
||||
face = face_cascade.detectMultiScale(data_gray, 1.3, 4)
|
||||
face_cascade = cv2.CascadeClassifier(classifier_file)
|
||||
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
||||
face = max(face, key=len)
|
||||
x, y, w, h = face
|
||||
face = data[y:y + h, x:x + w]
|
||||
return face
|
||||
|
||||
|
||||
def plot_two_images(a: np.ndarray, b: np.ndarray):
|
||||
plt.figure(figsize=[10, 10])
|
||||
plt.subplot(121)
|
||||
plt.imshow(a)
|
||||
plt.title("A")
|
||||
plt.subplot(122)
|
||||
plt.imshow(b)
|
||||
plt.title("B")
|
||||
plt.show()
|
||||
|
||||
|
||||
def compare_with_anime_characters(data: np.ndarray) -> int:
|
||||
# TODO
|
||||
return 1
|
||||
# Example will be one face from anime dataset
|
||||
example = load_source('data/images/Aisaka, Taiga.jpg')
|
||||
# TODO: Use a different face detection method for anime images
|
||||
example_face = find_and_crop_face(example, 'haarcascades/lbpcascade_animeface.xml')
|
||||
data_rescaled = cv2.resize(data, example_face.shape[:2])
|
||||
plot_two_images(example_face, data_rescaled)
|
||||
print(histogram_comparison(data_rescaled, example_face))
|
||||
print(f'structural-similarity: {structural_similarity_index(data_rescaled, example_face)}')
|
||||
print(f'euclidean-distance: {euclidean_distance(data_rescaled, example_face)}')
|
||||
|
||||
|
||||
def transfer_to_anime(img: np.ndarray):
|
||||
algo = Cartoonizer(dataroot='damo/cv_unet_person-image-cartoon_compound-models')
|
||||
return algo.cartoonize(img)
|
||||
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
||||
return algo.cartoonize(img).astype(np.uint8)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
source = load_source('input.png')
|
||||
source_face = find_and_crop_face(source)
|
||||
source_face_anime = transfer_to_anime(source)
|
||||
source = load_source('UAM-Andre.jpg')
|
||||
source_anime = transfer_to_anime(source)
|
||||
source_face_anime = find_and_crop_face(source_anime)
|
||||
print(compare_with_anime_characters(source_face_anime))
|
||||
|
@ -6,3 +6,6 @@ requests==2.28.2
|
||||
beautifulsoup4==4.11.1
|
||||
lxml==4.9.2
|
||||
opencv-python==4.7.0.68
|
||||
torch==1.13.1
|
||||
matplotlib==3.6.3
|
||||
scikit-image==0.19.3
|
Loading…
Reference in New Issue
Block a user