import numpy as np import os from skimage.io import imread import cv2 as cv from pathlib import Path def load_data(input_dir, newSize=(64,64)): image_path = Path(input_dir) file_names = os.listdir(image_path) categories_name = [] categories_count=[] count = 0 n = file_names[0] for name in file_names: if name != n: categories_count.append(count) n = name count = 1 else: count += 1 if not name in categories_name: categories_name.append(name) categories_count.append(count) test_img = [] labels=[] for n in file_names: p = image_path / n img = imread(p) # zwraca ndarry postaci xSize x ySize x colorDepth img = cv.resize(img, newSize, interpolation=cv.INTER_AREA) # zwraca ndarray img = img / 255 # type: ignore #normalizacja test_img.append(img) labels.append(n) X={} X["values"] = np.array(test_img) X["categories_name"] = categories_name X["categories_count"] = categories_count X["labels"]=labels return X data = load_data('test_set') print(data['categories_name']) print(data['categories_count']) print(data['labels']) print(list(data["values"]))