diff --git a/zad9.py b/zad9.py new file mode 100644 index 0000000..33f14e4 --- /dev/null +++ b/zad9.py @@ -0,0 +1,193 @@ +import itertools +import lzma + +import numpy as np +import torch +from torch import nn +from torch.utils.data import IterableDataset, DataLoader +from torchtext.vocab import build_vocab_from_iterator + + +def clean_line(line): + # Preprocessing + separated = line.split('\t') + prefix = separated[6].replace(r'\n', ' ') + suffix = separated[7].replace(r'\n', ' ') + return prefix + ' ' + suffix + + +def get_words_from_line(line): + line = clean_line(line) + for word in line.split(): + yield word + + +def get_word_lines_from_file(file_name): + with lzma.open(file_name, mode='rt', encoding='utf-8') as fid: + for line in fid: + yield get_words_from_line(line) + + +def n_look_ahead_iterator(n, gen): + prevs = [None for _ in range(n)] + for item in gen: + if prevs[-1] is not None: + ngram = prevs[::-1] + ngram.append(item) + yield np.asarray(ngram) + prevs.insert(0, item) + prevs = prevs[:n - 1] + + +class Ngrams(IterableDataset): + def __init__(self, text_file: str, context_size: int, vocabulary_size: int): + self.vocab = build_vocab_from_iterator( + get_word_lines_from_file(text_file), + max_tokens=vocabulary_size, + specials=[''] + ) + self.vocab.set_default_index(self.vocab['']) + self.vocabulary_size = vocabulary_size + self.text_file = text_file + self.ngram_size = context_size + 1 + + def __iter__(self): + return n_look_ahead_iterator( + self.ngram_size, + (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))) + ) + + +class NgramWithBagLM(nn.Module): + def __init__(self, smaller_context_size, context_size, embedding_size, vocabulary_size, hidden_size): + super().__init__() + self.smaller_context_size = smaller_context_size + self.context_size = context_size + self.embedding_size = embedding_size + self.embedding = nn.Embedding(vocabulary_size, embedding_size) + self.bag_embedding = nn.Embedding(vocabulary_size, embedding_size) + self.lin1 = nn.Linear((smaller_context_size + 1) * embedding_size, hidden_size) + self.rel = nn.ReLU() + self.lin2 = nn.Linear(hidden_size, vocabulary_size) + self.sm = nn.Softmax(dim=1) + + def forward(self, words): + smaller_context_embed = [ + self.embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size, self.context_size) + ] + smaller_context_embed = torch.cat(smaller_context_embed, dim=-1) + bag_embed = [ + self.bag_embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size) + ] + bag_embed = torch.mean(torch.stack(bag_embed), dim=0) + x = torch.cat((bag_embed, smaller_context_embed), dim=-1) + + x = self.lin1(x) + x = self.rel(x) + x = self.lin2(x) + return self.sm(x) + + +def train_model(): + model = NgramWithBagLM( + smaller_context, + context_size, + embed_size, + vocab_size, + hidden_size + ).to(device) + + data = DataLoader(train_dataset, batch_size=batch_size) + optimizer = torch.optim.Adam(model.parameters(), lr=lr) + criterion = torch.nn.NLLLoss() + + model.train() + + step = 0 + for batch in data: + print(batch.shape) + # x = batch[:, :context_size] + # y = batch[:, context_size] + x = batch + y = batch[:, left_ctx:left_ctx + 1] + print(x.shape) + print(y.shape) + x = x.to(device) + y = y.type(torch.LongTensor) + y = y.to(device) + optimizer.zero_grad() + ypredicted = model(x) + loss = criterion(torch.log(ypredicted), y) + if torch.isnan(loss): + raise Exception("loss is nan") + if step % 1000 == 0: + print(step, loss) + step += 1 + loss.backward() + torch.nn.utils.clip_grad_norm_(model.parameters(), 5) + optimizer.step() + + # cond? + torch.save(model.state_dict(), path_to_model) + + +def prediction(model, words: list, top=500) -> str: + words_tensor = [train_dataset.vocab.forward([word]) for word in words] + ixs = torch.tensor(words_tensor).view(-1).to(device) + out = model(ixs.view(1, -1)) + top = torch.topk(out[0], top) + top_indices = top.indices.tolist() + top_probs = top.values.tolist() + top_words = train_dataset.vocab.lookup_tokens(top_indices) + zipped = list(zip(top_words, top_probs)) + for index, element in enumerate(zipped): + unk = None + if '' in element: + unk = zipped.pop(index) + zipped.append(('', unk[1])) + break + if unk is None: + zipped[-1] = ('', zipped[-1][1]) + return ' '.join([f'{x[0]}:{x[1]}' for x in zipped]) + + +device = 'cuda' +vocab_size = 250 +#context_size = 40 +left_ctx = 20 +right_ctx = 20 +#smaller_context = 8 +smaller_left_ctx = 5 +smaller_right_ctx = 3 +embed_size = 20 +hidden_size = 10 +batch_size = 4000 +lr = 0.0001 +path_to_train = 'train/in.tsv.xz' +path_to_model = 'model3.bin' + +train_dataset = Ngrams(path_to_train, left_ctx + right_ctx, vocab_size) + + +train_model() +model = NgramWithBagLM( + smaller_context, + context_size, + embed_size, + vocab_size, + hidden_size + ).to(device) + +model.load_state_dict(torch.load(path_to_model)) +model.eval() + +folder_name = 'dev-0' +top = 500 +print(f'Creating outputs in {folder_name}') +with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid: + with open(f'{folder_name}/out-top={top}.tsv', 'w', encoding='utf-8', newline='\n') as f: + for line in fid: + separated = line.split('\t') + prefix = separated[6].replace(r'\n', ' ').split()[-context_size:] + output_line = prediction(model, prefix, top) + f.write(output_line + '\n') \ No newline at end of file