pytorch
This commit is contained in:
parent
00de25502f
commit
84cd3d6fa9
@ -8,11 +8,13 @@ RUN pip3 install pandas
|
||||
RUN pip3 install matplotlib
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install kaggle
|
||||
RUN pip3 install torch
|
||||
|
||||
WORKDIR /ium
|
||||
|
||||
COPY ./ium-data.py ./
|
||||
COPY ./download.sh ./
|
||||
COPY ./biblioteki_ml.py ./
|
||||
|
||||
ARG KAGGLE_KEY
|
||||
ARG KAGGLE_USERNAME
|
||||
|
93
biblioteki_ml.py
Normal file
93
biblioteki_ml.py
Normal file
@ -0,0 +1,93 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# Model
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_features=2, hidden_layer1=60, hidden_layer2=90, output_features=3):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_features, hidden_layer1)
|
||||
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
|
||||
self.out = nn.Linear(hidden_layer2, output_features)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.out(x)
|
||||
return x
|
||||
|
||||
|
||||
# Ładowanie danych
|
||||
train_set = pd.read_csv('d_train.csv', encoding='latin-1')
|
||||
train_set = train_set[['Rating', 'Branch', 'Reviewer_Location']]
|
||||
|
||||
test_set = pd.read_csv('d_test.csv', encoding='latin-1')
|
||||
test_set = test_set[['Rating', 'Branch', 'Reviewer_Location']]
|
||||
|
||||
|
||||
# Mapowanie kolumny 'Reviewer_Location' na cyfry
|
||||
le = LabelEncoder()
|
||||
le.fit(pd.concat([train_set['Reviewer_Location'], test_set['Reviewer_Location']]))
|
||||
train_set['Reviewer_Location'] = le.transform(train_set['Reviewer_Location'])
|
||||
test_set['Reviewer_Location'] = le.transform(test_set['Reviewer_Location'])
|
||||
|
||||
|
||||
# Mapowanie kolumny 'Branch' na inny sposób
|
||||
mappings = {
|
||||
'Disneyland_California': 0,
|
||||
'Disneyland_Paris': 1,
|
||||
'Disneyland_HongKong': 2
|
||||
}
|
||||
train_set['Branch'] = train_set['Branch'].apply(lambda x: mappings[x])
|
||||
test_set['Branch'] = test_set['Branch'].apply(lambda x: mappings[x])
|
||||
|
||||
|
||||
# Zamiana danych na tensory
|
||||
X_train = train_set[['Rating', 'Reviewer_Location']].to_numpy()
|
||||
X_test = test_set[['Rating', 'Reviewer_Location']].to_numpy()
|
||||
y_train = train_set['Branch'].to_numpy()
|
||||
y_test = test_set['Branch'].to_numpy()
|
||||
|
||||
X_train = torch.FloatTensor(X_train)
|
||||
X_test = torch.FloatTensor(X_test)
|
||||
y_train = torch.LongTensor(y_train)
|
||||
y_test = torch.LongTensor(y_test)
|
||||
|
||||
|
||||
# Hiperparametry
|
||||
model = Model()
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
||||
|
||||
|
||||
# Trening
|
||||
epochs = 100
|
||||
losses = []
|
||||
for i in range(epochs):
|
||||
y_pred = model.forward(X_train)
|
||||
loss = criterion(y_pred, y_train)
|
||||
losses.append(loss)
|
||||
print(f'epoch: {i:2} loss: {loss.item():10.8f}')
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# Testy
|
||||
preds = []
|
||||
with torch.no_grad():
|
||||
for val in X_test:
|
||||
y_hat = model.forward(val)
|
||||
preds.append(y_hat.argmax().item())
|
||||
|
||||
df = pd.DataFrame({'Testing Y': y_test, 'Predicted Y': preds})
|
||||
df['Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Testing Y'], df['Predicted Y'])]
|
||||
print(f"{df['Correct'].sum() / len(df)} percent of predictions correct")
|
||||
|
||||
|
||||
# Zapis do pliku
|
||||
df.to_csv('neural_network_prediction_results.csv', index=False)
|
Loading…
Reference in New Issue
Block a user