.
All checks were successful
s444501-training/pipeline/head This commit looks good

This commit is contained in:
s444501 2022-04-24 04:07:29 +02:00
parent 6382bbe8cf
commit 9ac404acff
2 changed files with 5 additions and 5 deletions

2
Jenkinsfile vendored
View File

@ -37,7 +37,7 @@ pipeline {
sh 'chmod u+x download.sh'
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}","KAGGLE_KEY=${params.KAGGLE_KEY}", "CUTOFF=${params.CUTOFF}"]) {
sh 'echo KAGGLE_USERNAME: $KAGGLE_USERNAME'
sh './download.sh'
//sh './download.sh'
sh "python ium-data.py"
}
archiveArtifacts artifacts: 'd_test.csv, d_dev.csv, d_train.csv'

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python3
#from kaggle.api.kaggle_api_extended import KaggleApi
from kaggle.api.kaggle_api_extended import KaggleApi
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
@ -28,9 +28,9 @@ def column_stat(analyzed_set, column_name):
# Pobieranie danych
#api = KaggleApi()
#api.authenticate()
#api.dataset_download_files('arushchillar/disneyland-reviews', unzip=True)
api = KaggleApi()
api.authenticate()
api.dataset_download_files('arushchillar/disneyland-reviews', unzip=True)
disney = pd.read_csv('DisneylandReviews.csv', encoding='latin-1')
# Nie zauważyłem w pliku żadnych artefaktów, które trzeba wyczyścić