import sys import torch import torch.nn as nn import torch.nn.functional as F from sacred.observers import FileStorageObserver, MongoObserver from sklearn.preprocessing import LabelEncoder import pandas as pd from sacred import Experiment # Model class Model(nn.Module): def __init__(self, input_features=2, hidden_layer1=60, hidden_layer2=90, output_features=3): super().__init__() self.fc1 = nn.Linear(input_features, hidden_layer1) self.fc2 = nn.Linear(hidden_layer1, hidden_layer2) self.out = nn.Linear(hidden_layer2, output_features) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.out(x) return x # Sacred ex = Experiment() ex.observers.append(FileStorageObserver('my_runs')) # Parametry treningu -> my_runs/X/config.json # Plik z modelem jako artefakt -> my_runs/X/model.pkl # Kod źródłowy -> my_runs/_sources/biblioteki_ml_XXXXXXXXXXX.py # Wyniki (ostateczny loss) -> my_runs/X/metrics.json ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred')) @ex.config def my_config(): epochs = 100 @ex.automain def train_main(epochs, _run): # Parametry z konsoli # try: # epochs = int(sys.argv[1]) # except: # print('No epoch number passed. Defaulting to 100') # epochs = 100 # Ładowanie danych train_set = pd.read_csv('d_train.csv', encoding='latin-1') train_set = train_set[['Rating', 'Branch', 'Reviewer_Location']] test_set = pd.read_csv('d_test.csv', encoding='latin-1') test_set = test_set[['Rating', 'Branch', 'Reviewer_Location']] # Mapowanie kolumny 'Reviewer_Location' na cyfry le = LabelEncoder() le.fit(pd.concat([train_set['Reviewer_Location'], test_set['Reviewer_Location']])) train_set['Reviewer_Location'] = le.transform(train_set['Reviewer_Location']) test_set['Reviewer_Location'] = le.transform(test_set['Reviewer_Location']) # Mapowanie kolumny 'Branch' na inny sposób mappings = { 'Disneyland_California': 0, 'Disneyland_Paris': 1, 'Disneyland_HongKong': 2 } train_set['Branch'] = train_set['Branch'].apply(lambda x: mappings[x]) test_set['Branch'] = test_set['Branch'].apply(lambda x: mappings[x]) # Zamiana danych na tensory X_train = train_set[['Rating', 'Reviewer_Location']].to_numpy() X_test = test_set[['Rating', 'Reviewer_Location']].to_numpy() y_train = train_set['Branch'].to_numpy() y_test = test_set['Branch'].to_numpy() X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) y_train = torch.LongTensor(y_train) y_test = torch.LongTensor(y_test) # Hiperparametry model = Model() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Trening losses = [] for i in range(epochs): y_pred = model.forward(X_train) loss = criterion(y_pred, y_train) losses.append(loss) print(f'epoch: {i:2} loss: {loss.item():10.8f}') optimizer.zero_grad() loss.backward() optimizer.step() _run.log_scalar("training.final_loss", losses[-1].item()) # Ostateczny loss # Testy preds = [] with torch.no_grad(): for val in X_test: y_hat = model.forward(val) preds.append(y_hat.argmax().item()) df = pd.DataFrame({'Testing Y': y_test, 'Predicted Y': preds}) df['Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Testing Y'], df['Predicted Y'])] print(f"{df['Correct'].sum() / len(df)} percent of predictions correct") # Zapis do pliku df.to_csv('neural_network_prediction_results.csv', index=False) torch.save(model, "model.pkl") # Zapis Sacred ex.add_artifact("model.pkl") ex.add_artifact("neural_network_prediction_results.csv")