import torch import matplotlib.pyplot as plt import os import json from sklearn.metrics import accuracy_score, precision_score, recall_score import pandas as pd # Wczytywanie # Nie potrzebuje wczytywać modelu i danych testowych bo w jobie trenującym już stworzyłem csv z wynikami # model = torch.load('model.pkl') # test_set = pd.read_csv('d_test.csv', encoding='latin-1') test_results = pd.read_csv('neural_network_prediction_results.csv') # Ewaluacja y_true = test_results['Testing Y'] y_predicted = test_results['Predicted Y'] accuracy = accuracy_score(y_true, y_predicted) precision = precision_score(y_true, y_predicted, average='macro') recall = recall_score(y_true, y_predicted, average='macro') eval_results = { 'Accuracy': accuracy, 'Macro-Avg Precision': precision, 'Macro-Avg Recall': recall } filename = 'eval_results.json' if not os.path.exists(filename): print('No previous evaluation?') with open(filename, 'w') as file: json.dump({'eval_results': []}, file, indent=2) with open(filename, 'r+') as file: file_data = json.load(file) file_data['eval_results'].append(eval_results) file.seek(0) json.dump(file_data, file, indent=2) with open(filename, 'r') as file: results = json.load(file)['eval_results'] f_acc = [] f_prc = [] f_rec = [] for res in results: f_acc.append(res['Accuracy']) f_prc.append(res['Macro-Avg Precision']) f_rec.append(res['Macro-Avg Recall']) build_axis = [i+1 for i in range(len(f_acc))] plt.xlabel('Build') plt.ylabel('Score') plt.plot(build_axis, f_acc, label='Accuracy') plt.plot(build_axis, f_prc, label='Macro-Avg Precision') plt.plot(build_axis, f_rec, label='Macro-Avg Recall') plt.legend() plt.show() plt.savefig('metrics.png')