ium_444501/biblioteki_ml.py
s444501 8eca92baef
All checks were successful
s444501-training/pipeline/head This commit looks good
s444501-evaluation/pipeline/head This commit looks good
mlflow
2022-05-13 00:59:11 +02:00

137 lines
4.2 KiB
Python

import sys
from urllib.parse import urlparse
import numpy as np
import mlflow
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.preprocessing import LabelEncoder
import pandas as pd
# MLFlow 1
mlflow.set_experiment("s444501")
# Parametry z konsoli
try:
epochs = int(sys.argv[1])
except:
print('No epoch number passed. Defaulting to 100')
epochs = 100
# Model
class Model(nn.Module):
def __init__(self, input_features=2, hidden_layer1=60, hidden_layer2=90, output_features=3):
super().__init__()
self.fc1 = nn.Linear(input_features, hidden_layer1)
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
self.out = nn.Linear(hidden_layer2, output_features)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.out(x)
return x
def train_main(epochs, run):
# Ładowanie danych
train_set = pd.read_csv('d_train.csv', encoding='latin-1')
train_set = train_set[['Rating', 'Branch', 'Reviewer_Location']]
test_set = pd.read_csv('d_test.csv', encoding='latin-1')
test_set = test_set[['Rating', 'Branch', 'Reviewer_Location']]
# Mapowanie kolumny 'Reviewer_Location' na cyfry
le = LabelEncoder()
le.fit(pd.concat([train_set['Reviewer_Location'], test_set['Reviewer_Location']]))
train_set['Reviewer_Location'] = le.transform(train_set['Reviewer_Location'])
test_set['Reviewer_Location'] = le.transform(test_set['Reviewer_Location'])
# Mapowanie kolumny 'Branch' na inny sposób
mappings = {
'Disneyland_California': 0,
'Disneyland_Paris': 1,
'Disneyland_HongKong': 2
}
train_set['Branch'] = train_set['Branch'].apply(lambda x: mappings[x])
test_set['Branch'] = test_set['Branch'].apply(lambda x: mappings[x])
# Zamiana danych na tensory
X_train = train_set[['Rating', 'Reviewer_Location']].to_numpy()
X_test = test_set[['Rating', 'Reviewer_Location']].to_numpy()
y_train = train_set['Branch'].to_numpy()
y_test = test_set['Branch'].to_numpy()
X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)
# Hiperparametry
model = Model()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Trening
losses = []
for i in range(epochs):
y_pred = model.forward(X_train)
loss = criterion(y_pred, y_train)
losses.append(loss)
print(f'epoch: {i:2} loss: {loss.item():10.8f}')
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Testy
preds = []
with torch.no_grad():
for val in X_test:
y_hat = model.forward(val)
preds.append(y_hat.argmax().item())
df = pd.DataFrame({'Testing Y': y_test, 'Predicted Y': preds})
df['Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Testing Y'], df['Predicted Y'])]
correct = df['Correct'].sum() / len(df)
print(f"{correct} percent of predictions correct")
# Logi
mlflow.log_param("epochs", epochs)
mlflow.log_metric("final_loss", losses[-1].item())
mlflow.log_metric("accuracy", correct)
signature = mlflow.models.signature.infer_signature(X_train.numpy(), np.array(preds))
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
if tracking_url_type_store != "file":
mlflow.pytorch.log_model(model,
's444501',
registered_model_name='s444501',
signature=signature,
input_example=X_test.numpy())
else:
mlflow.pytorch.log_model(model,
's444501',
signature=signature,
input_example=X_test.numpy())
# Zapis do pliku
df.to_csv('neural_network_prediction_results.csv', index=False)
torch.save(model, "model.pkl")
with mlflow.start_run() as run:
print(f"MLflow run experiment_id: {run.info.experiment_id}")
print(f"MLflow run artifact_uri: {run.info.artifact_uri}")
train_main(epochs, run)