AI-Tech-WKO-Projekt/data/loaders.py

118 lines
3.6 KiB
Python
Raw Permalink Normal View History

2023-02-03 16:09:03 +01:00
import os
from abc import ABC
from pathlib import Path
from typing import Callable
import cv2 as cv
import numpy as np
import torch
from skimage.io import imread
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
2023-02-03 16:27:19 +01:00
def _load_data(input_dir, new_size):
2023-02-03 16:09:03 +01:00
image_dir = Path(input_dir)
categories_name = {}
i = 0
for file in os.listdir(image_dir):
directory = os.path.join(image_dir, file)
if os.path.isdir(directory):
categories_name[i] = file
i += 1
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]
train_img = []
categories_count = len(folders)
labels = []
for directory in folders:
count = 0
for obj in directory.iterdir():
try:
img = imread(obj)
if new_size is not None:
img = cv.resize(img, (new_size, new_size), interpolation=cv.INTER_AREA)
img = img / 255
train_img.append(img)
labels.append(os.path.basename(os.path.normpath(directory)))
count += 1
except ValueError:
# This can happen when a file is broken, so let's omit it.
print(f'Broken file: {obj}')
return {
"values": np.array(train_img),
"categories_count": categories_count,
"labels": labels,
"categories_name": categories_name
}
class FlatsDataset(Dataset):
def __init__(self, data, device):
self.device = device
self.x = []
for d in data['values']:
self.x.append(transforms.ToTensor()(d))
self.y = torch.LongTensor(LabelEncoder().fit_transform(data['labels']))
def __len__(self):
return len(self.x)
def __getitem__(self, ind):
return self.x[ind], self.y[ind]
class FlatsDatasetLoader(Dataset, ABC):
def __init__(
self,
images_dir: str,
resize_to: int or None = None,
batch_size: int = 512,
device: str = 'cpu',
file_loader: Callable[[str, int or None], dict] = _load_data
):
self.images_dir = images_dir
self.resize_to = resize_to
self.batch_size = batch_size
self.device = device
self.loader = file_loader
self.train_loader = None
self.test_loader = None
self.classes_count = 0
self.label_names = {}
def load(self, verbose: bool = True):
test_dir = os.path.join(self.images_dir, 'test')
train_dir = os.path.join(self.images_dir, 'train')
if verbose:
print('Loading dataset from files...')
test_raw = self.loader(test_dir, self.resize_to)
train_raw = self.loader(train_dir, self.resize_to)
self.classes_count = test_raw['categories_count']
self.label_names = test_raw['categories_name']
if verbose:
print('Done. Creating PyTorch datasets...')
train_set = FlatsDataset(train_raw, self.device)
test_set = FlatsDataset(test_raw, self.device)
self.train_loader = DataLoader(train_set, batch_size=self.batch_size, shuffle=True)
self.test_loader = DataLoader(test_set, batch_size=self.batch_size, shuffle=False)
if verbose:
print('Done.')
def get_train_loader(self) -> DataLoader:
return self.train_loader
def get_test_loader(self) -> DataLoader:
return self.test_loader
def get_label_names(self) -> dict:
return self.label_names
def get_classes_count(self) -> int:
return self.classes_count