2023-02-03 16:09:03 +01:00
|
|
|
import os
|
|
|
|
from abc import ABC
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable
|
|
|
|
|
|
|
|
import cv2 as cv
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from skimage.io import imread
|
|
|
|
from sklearn.preprocessing import LabelEncoder
|
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
from torchvision.transforms import transforms
|
|
|
|
|
|
|
|
|
2023-02-03 16:27:19 +01:00
|
|
|
def _load_data(input_dir, new_size):
|
2023-02-03 16:09:03 +01:00
|
|
|
image_dir = Path(input_dir)
|
|
|
|
categories_name = {}
|
|
|
|
i = 0
|
|
|
|
for file in os.listdir(image_dir):
|
|
|
|
directory = os.path.join(image_dir, file)
|
|
|
|
if os.path.isdir(directory):
|
|
|
|
categories_name[i] = file
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]
|
|
|
|
|
|
|
|
train_img = []
|
|
|
|
categories_count = len(folders)
|
|
|
|
labels = []
|
|
|
|
for directory in folders:
|
|
|
|
count = 0
|
|
|
|
for obj in directory.iterdir():
|
|
|
|
try:
|
|
|
|
img = imread(obj)
|
|
|
|
if new_size is not None:
|
|
|
|
img = cv.resize(img, (new_size, new_size), interpolation=cv.INTER_AREA)
|
|
|
|
img = img / 255
|
|
|
|
train_img.append(img)
|
|
|
|
labels.append(os.path.basename(os.path.normpath(directory)))
|
|
|
|
count += 1
|
|
|
|
except ValueError:
|
|
|
|
# This can happen when a file is broken, so let's omit it.
|
|
|
|
print(f'Broken file: {obj}')
|
|
|
|
return {
|
|
|
|
"values": np.array(train_img),
|
|
|
|
"categories_count": categories_count,
|
|
|
|
"labels": labels,
|
|
|
|
"categories_name": categories_name
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class FlatsDataset(Dataset):
|
|
|
|
def __init__(self, data, device):
|
|
|
|
self.device = device
|
|
|
|
self.x = []
|
|
|
|
for d in data['values']:
|
|
|
|
self.x.append(transforms.ToTensor()(d))
|
|
|
|
self.y = torch.LongTensor(LabelEncoder().fit_transform(data['labels']))
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.x)
|
|
|
|
|
|
|
|
def __getitem__(self, ind):
|
|
|
|
return self.x[ind], self.y[ind]
|
|
|
|
|
|
|
|
|
|
|
|
class FlatsDatasetLoader(Dataset, ABC):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
images_dir: str,
|
|
|
|
resize_to: int or None = None,
|
|
|
|
batch_size: int = 512,
|
|
|
|
device: str = 'cpu',
|
|
|
|
file_loader: Callable[[str, int or None], dict] = _load_data
|
|
|
|
):
|
|
|
|
self.images_dir = images_dir
|
|
|
|
self.resize_to = resize_to
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.device = device
|
|
|
|
self.loader = file_loader
|
|
|
|
self.train_loader = None
|
|
|
|
self.test_loader = None
|
|
|
|
self.classes_count = 0
|
|
|
|
self.label_names = {}
|
|
|
|
|
|
|
|
def load(self, verbose: bool = True):
|
|
|
|
test_dir = os.path.join(self.images_dir, 'test')
|
|
|
|
train_dir = os.path.join(self.images_dir, 'train')
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
print('Loading dataset from files...')
|
|
|
|
test_raw = self.loader(test_dir, self.resize_to)
|
|
|
|
train_raw = self.loader(train_dir, self.resize_to)
|
|
|
|
|
|
|
|
self.classes_count = test_raw['categories_count']
|
|
|
|
self.label_names = test_raw['categories_name']
|
|
|
|
if verbose:
|
|
|
|
print('Done. Creating PyTorch datasets...')
|
|
|
|
train_set = FlatsDataset(train_raw, self.device)
|
|
|
|
test_set = FlatsDataset(test_raw, self.device)
|
|
|
|
|
|
|
|
self.train_loader = DataLoader(train_set, batch_size=self.batch_size, shuffle=True)
|
|
|
|
self.test_loader = DataLoader(test_set, batch_size=self.batch_size, shuffle=False)
|
|
|
|
if verbose:
|
|
|
|
print('Done.')
|
|
|
|
|
|
|
|
def get_train_loader(self) -> DataLoader:
|
|
|
|
return self.train_loader
|
|
|
|
|
|
|
|
def get_test_loader(self) -> DataLoader:
|
|
|
|
return self.test_loader
|
|
|
|
|
|
|
|
def get_label_names(self) -> dict:
|
|
|
|
return self.label_names
|
|
|
|
|
|
|
|
def get_classes_count(self) -> int:
|
|
|
|
return self.classes_count
|