AI-Tech-WKO-Projekt/experiments/inference.py
2023-02-03 16:27:19 +01:00

77 lines
2.2 KiB
Python

import argparse
import cv2 as cv
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
def infer(data, network, loss_fn, device_type):
x_cpu, y_cpu = data
x = x_cpu.to(device_type).float()
y = y_cpu.to(device_type).long()
output = network(x)
loss = loss_fn(output, y)
return output, loss
def evaluate(
network: nn.Module,
test_data: DataLoader,
loss_fn,
device_type: str
):
"""
Test a given model and return true, predicted values and loss
"""
network.eval()
preds, losses = np.array([]), []
trues = np.array([])
with torch.no_grad():
for data in test_data:
output, loss = infer(data, network, loss_fn, device_type)
trues = np.concatenate((trues, data[1].data.numpy()))
preds = np.concatenate(
(preds, torch.nn.functional.softmax(output, dim=1)
.cpu()
.data
.numpy()
.argmax(axis=1))
)
losses.append(loss.item())
return trues, preds, losses
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser(description="Load a model and run inference on a source image")
parser.add_argument(
"-m", "--model", required=True, type=str, help="path to a pickled model to load"
)
parser.add_argument \
("-i", "--image", required=True, type=str, help="path to an image to load"
)
args = parser.parse_args()
model = torch.load(args.model)
image = cv.imread(args.image)
image = image / 255
processed = transforms.ToTensor()(image).to(device)
predicted = model(processed.float().unsqueeze(0))
labels = {
'0': 'ArtDeco',
'1': 'Classic',
'2': 'Glamour',
'3': 'Industrial',
'4': 'Minimalistic',
'5': 'Modern',
'6': 'Rustic',
'7': 'Scandinavian',
'8': 'Vintage',
}
print(labels[str(
torch.nn.functional.softmax(predicted, dim=1).cpu().data.numpy().argmax(axis=1)[0]
)])