zadanie - script.py
This commit is contained in:
Adam Wojdyla 2022-03-19 19:54:20 +01:00
parent 747933d63c
commit 3225701a1b
2 changed files with 98 additions and 1 deletions

View File

@ -1 +1,88 @@
print('c')
import subprocess
import sys
def install_dependencies():
"""Install kaggle and pandas."""
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'pip'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'kaggle'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'pandas'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'seaborn'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'scikit-learn'])
def unzip_package():
"""Unzip dataset"""
os.system('unzip -o car-prices-poland.zip')
def download_dataset():
"""Download kaggle dataset."""
os.system('kaggle datasets download -d aleksandrglotov/car-prices-poland')
def divide_dataset(dataset):
"""Split dataset to dev, train, test datasets. """
os.system('cat Car_Prices_Poland_Kaggle.csv | shuf > Car_Prices_Poland_Kaggle_shuf.csv')
len_train = len(dataset) // 10 * 6
len_dev = len(dataset) // 10 * 2
len_test = len(dataset) // 10 * 2
if len_test + len_train + len_dev != len(dataset):
len_train += len(dataset) - (len_test + len_train + len_dev)
os.system(f'head -n {len_train} Car_Prices_Poland_Kaggle.csv | shuf > Car_Prices_Poland_Kaggle_train.csv')
os.system(f'head -n {len_dev} Car_Prices_Poland_Kaggle.csv | shuf > Car_Prices_Poland_Kaggle_dev.csv')
os.system(f'head -n {len_test} Car_Prices_Poland_Kaggle.csv | shuf > Car_Prices_Poland_Kaggle_test.csv')
os.system('rm ./Car_Prices_Poland_Kaggle_shuf.csv')
print("Len match: " + str(sum([len_test, len_dev, len_train]) == len(dataset)))
def get_statistics(dataset):
"""Mean, min, max, median etc."""
print(f'--------------- Dataset length ---------------')
print(len(dataset))
print(f'---------------Describe dataset---------------')
pd.set_option('display.max_columns', None)
print(dataset.describe(include='all'))
def normalize_dataset(dataset):
"""Drop unnecessary columns and set numeric values to [0,1] range"""
# drop columns
dataset.drop(columns=["Unnamed: 0", "generation_name"], inplace=True)
# normalize numbers to [0, 1]
for column in dataset.columns:
if isinstance(dataset.iloc[1][column], np.int64) or isinstance(dataset.iloc[1][column], np.float64):
dataset[column] = (dataset[column] - dataset[column].min()) / (
dataset[column].max() - dataset[column].min())
# There is no null rows
# dataset.isnull().sum()
return dataset
install_dependencies()
import pandas as pd
import os
import numpy as np
download_dataset()
unzip_package()
cars = pd.read_csv('./Car_Prices_Poland_Kaggle.csv')
normalize_dataset(cars)
divide_dataset(cars)
get_statistics(cars)

10
tesy.py Normal file
View File

@ -0,0 +1,10 @@
# cars = pd.read_csv('Car_Prices_Poland_Kaggle.csv')
# cars_normalized = normalize_dataset(cars)
#
# # cars[["mark", "price"]].groupby("mark").mean().plot(kind="bar")
# cars["mark"].value_counts().plot(kind="bar")
#
# print(cars.describe(include='all'))
# print(cars["price"].value_counts())
#
# divide_dataset(cars)