dvc repro
This commit is contained in:
parent
a9ad0e2ee1
commit
54ce588c87
1
.gitignore
vendored
1
.gitignore
vendored
@ -160,3 +160,4 @@ IUM08/*
|
||||
mlruns
|
||||
my_model
|
||||
dvcstore
|
||||
/prediction_results.csv
|
||||
|
1
data/.gitignore
vendored
Normal file
1
data/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
/prepared
|
46
dvc.lock
Normal file
46
dvc.lock
Normal file
@ -0,0 +1,46 @@
|
||||
schema: '2.0'
|
||||
stages:
|
||||
prepare:
|
||||
cmd: python3 script_prepare.py data/Car_Prices_Poland_Kaggle.csv
|
||||
deps:
|
||||
- path: data/Car_Prices_Poland_Kaggle.csv
|
||||
md5: 9170e9b525149cb1f571f318cd604913
|
||||
size: 9894367
|
||||
- path: script_prepare.py
|
||||
md5: f1dfe33a503f5acc687c53dee448f71b
|
||||
size: 1899
|
||||
outs:
|
||||
- path: data/Car_Prices_Poland_Kaggle_dev.csv
|
||||
md5: cf9355749edc79f588e264de5b2bf1f0
|
||||
size: 1648309
|
||||
- path: data/Car_Prices_Poland_Kaggle_test.csv
|
||||
md5: cf9355749edc79f588e264de5b2bf1f0
|
||||
size: 1648309
|
||||
- path: data/Car_Prices_Poland_Kaggle_train.csv
|
||||
md5: 8818f758e2de344a4b9ad712379b81e1
|
||||
size: 6597472
|
||||
train:
|
||||
cmd: python3 lab05_deepLearning.py 50
|
||||
deps:
|
||||
- path: data/Car_Prices_Poland_Kaggle_dev.csv
|
||||
md5: cf9355749edc79f588e264de5b2bf1f0
|
||||
size: 1648309
|
||||
- path: data/Car_Prices_Poland_Kaggle_test.csv
|
||||
md5: cf9355749edc79f588e264de5b2bf1f0
|
||||
size: 1648309
|
||||
- path: data/Car_Prices_Poland_Kaggle_train.csv
|
||||
md5: 8818f758e2de344a4b9ad712379b81e1
|
||||
size: 6597472
|
||||
outs:
|
||||
- path: CarPrices_pytorch_model.pkl
|
||||
md5: cff6a79945bbf839058a4fd1b2dcc98f
|
||||
size: 30039
|
||||
- path: prediction_results.csv
|
||||
md5: 62b9e54cdfebc7f1dfb060e18e9b8738
|
||||
size: 585197
|
||||
evaluate:
|
||||
cmd: python3 lab10_evaluate.py
|
||||
deps:
|
||||
- path: CarPrices_pytorch_model.pkl
|
||||
md5: cff6a79945bbf839058a4fd1b2dcc98f
|
||||
size: 30039
|
23
dvc.yaml
Normal file
23
dvc.yaml
Normal file
@ -0,0 +1,23 @@
|
||||
stages:
|
||||
prepare:
|
||||
cmd: python3 script_prepare.py data/Car_Prices_Poland_Kaggle.csv
|
||||
deps:
|
||||
- data/Car_Prices_Poland_Kaggle.csv
|
||||
- script_prepare.py
|
||||
outs:
|
||||
- data/Car_Prices_Poland_Kaggle_dev.csv
|
||||
- data/Car_Prices_Poland_Kaggle_train.csv
|
||||
- data/Car_Prices_Poland_Kaggle_test.csv
|
||||
train:
|
||||
cmd: python3 lab05_deepLearning.py 50
|
||||
deps:
|
||||
- data/Car_Prices_Poland_Kaggle_dev.csv
|
||||
- data/Car_Prices_Poland_Kaggle_train.csv
|
||||
- data/Car_Prices_Poland_Kaggle_test.csv
|
||||
outs:
|
||||
- CarPrices_pytorch_model.pkl
|
||||
- prediction_results.csv
|
||||
evaluate:
|
||||
cmd: python3 lab10_evaluate.py
|
||||
deps:
|
||||
- CarPrices_pytorch_model.pkl
|
@ -90,9 +90,9 @@ labels_test, features_test = prepare_labels_features(cars_dev)
|
||||
x_test = Variable(torch.from_numpy(features_test)).float()
|
||||
pred = model(x_test)
|
||||
pred = pred.detach().numpy()
|
||||
print_metrics(labels_test, pred)
|
||||
# print_metrics(labels_test, pred)
|
||||
|
||||
draw_plot()
|
||||
# draw_plot()
|
||||
|
||||
|
||||
|
||||
|
@ -1,13 +1,10 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
from urllib.parse import urlparse
|
||||
import mlflow
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, f1_score
|
||||
import torch.nn.functional as F
|
||||
import pandas as pd
|
||||
|
96
lab10_evaluate.py
Normal file
96
lab10_evaluate.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import pandas as pd
|
||||
from sklearn import preprocessing
|
||||
import numpy as np
|
||||
from torch.autograd import Variable
|
||||
from sklearn.metrics import accuracy_score, f1_score
|
||||
from csv import DictWriter
|
||||
import torch.nn.functional as F
|
||||
import sys
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_dim):
|
||||
super(Model, self).__init__()
|
||||
self.layer1 = nn.Linear(input_dim, 100)
|
||||
self.layer2 = nn.Linear(100, 60)
|
||||
self.layer3 = nn.Linear(60, 5)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.layer1(x))
|
||||
x = F.relu(self.layer2(x))
|
||||
x = F.softmax(self.layer3(x)) # To check with the loss function
|
||||
return x
|
||||
|
||||
|
||||
def prepare_labels_features(dataset):
|
||||
""" Label make column"""
|
||||
dataset = dataset.dropna()
|
||||
le = preprocessing.LabelEncoder()
|
||||
mark_column = np.array(dataset[:]['0'])
|
||||
le.fit(mark_column)
|
||||
|
||||
print(list(le.classes_))
|
||||
lab = le.transform(mark_column)
|
||||
feat = dataset.drop(['0'], axis=1).to_numpy()
|
||||
|
||||
mm_scaler = preprocessing.StandardScaler()
|
||||
feat = mm_scaler.fit_transform(feat)
|
||||
|
||||
return lab, feat
|
||||
|
||||
|
||||
def print_metrics(test_labels, predictions):
|
||||
# take column with max predicted score
|
||||
f1 = f1_score(labels_test, np.argmax(predictions, axis=1), average='weighted')
|
||||
accuracy = accuracy_score(test_labels, np.argmax(predictions, axis=1))
|
||||
print(f"The F1_score metric is: {f1}")
|
||||
print(f"The accuracy metric is: {accuracy}")
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
return
|
||||
|
||||
|
||||
build_number = sys.argv[1]
|
||||
print(f"Build number: {build_number}")
|
||||
field_names = ['BUILD_NUMBER', 'F1', 'ACCURACY']
|
||||
dict = {'BUILD_NUMBER': build_number, 'F1': f1, 'ACCURACY': accuracy }
|
||||
filename = "./metrics.csv"
|
||||
file_exists = os.path.isfile(filename)
|
||||
|
||||
with open(filename, 'a') as metrics_file:
|
||||
dictwriter_object = DictWriter(metrics_file, fieldnames=field_names)
|
||||
if not file_exists:
|
||||
dictwriter_object.writeheader()
|
||||
dictwriter_object.writerow(dict)
|
||||
metrics_file.close()
|
||||
|
||||
|
||||
"""
|
||||
Load model and data
|
||||
"""
|
||||
model = torch.load("CarPrices_pytorch_model.pkl")
|
||||
cars_dev = pd.read_csv('data/Car_Prices_Poland_Kaggle_dev.csv', usecols=[1, 4, 5, 6, 10], sep=',', names=[str(i) for i in range(5)])
|
||||
|
||||
|
||||
"""
|
||||
Prepare data
|
||||
"""
|
||||
cars_dev = cars_dev.loc[(cars_dev['0'] == 'audi') | (cars_dev['0'] == 'bmw') | (cars_dev['0'] == 'ford') | (cars_dev['0'] == 'opel') | (cars_dev['0'] == 'volkswagen')]
|
||||
labels_test, features_test = prepare_labels_features(cars_dev)
|
||||
x_test = Variable(torch.from_numpy(features_test)).float()
|
||||
|
||||
"""
|
||||
Make predictions
|
||||
"""
|
||||
pred = model(x_test)
|
||||
pred = pred.detach().numpy()
|
||||
print_metrics(labels_test, pred)
|
||||
|
||||
|
||||
|
60
script_prepare.py
Executable file
60
script_prepare.py
Executable file
@ -0,0 +1,60 @@
|
||||
import subprocess
|
||||
import sys
|
||||
import pandas as pd
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
try:
|
||||
dataset_path = sys.argv[1]
|
||||
except Exception as e:
|
||||
print("Exception while retrieving dataset path")
|
||||
print(e)
|
||||
|
||||
|
||||
def divide_dataset(dataset, path):
|
||||
"""Split dataset to dev, train, test datasets. """
|
||||
|
||||
print('Shuffle dataset...')
|
||||
shuf_path = 'data/Car_Prices_Poland_Kaggle_shuf.csv'
|
||||
os.system(f'tail -n +2 {path} | shuf > {shuf_path}')
|
||||
|
||||
len1 = len(dataset) // 6
|
||||
len2 = (len1 * 2) + 1
|
||||
|
||||
print('Dividing dataset...')
|
||||
os.system(f'head -n {len1} {shuf_path} > data/Car_Prices_Poland_Kaggle_dev.csv')
|
||||
os.system(f'head -n {len1} {shuf_path} | tail -n {len1} > data/Car_Prices_Poland_Kaggle_test.csv')
|
||||
os.system(f'tail -n +{len2} {shuf_path} > data/Car_Prices_Poland_Kaggle_train.csv')
|
||||
|
||||
os.system(f'rm {shuf_path}')
|
||||
print("Len match: " + str(sum([len1 * 2, len2]) == len(dataset)))
|
||||
os.system('cat Car_Prices_Poland_Kaggle_train.csv | wc -l')
|
||||
os.system('cat Car_Prices_Poland_Kaggle_dev.csv | wc -l')
|
||||
os.system('cat Car_Prices_Poland_Kaggle_test.csv | wc -l')
|
||||
|
||||
print('Dataset devided')
|
||||
|
||||
|
||||
def normalize_dataset(dataset):
|
||||
"""Drop unnecessary columns and set numeric values to [0,1] range"""
|
||||
|
||||
print(f'--------------- Initial dataset length ---------------')
|
||||
print(len(dataset))
|
||||
|
||||
# drop columns
|
||||
dataset.drop(columns=["Unnamed: 0", "generation_name"], inplace=True)
|
||||
dataset = dataset.dropna()
|
||||
|
||||
# normalize numbers to [0, 1]
|
||||
for column in dataset.columns:
|
||||
if isinstance(dataset.iloc[1][column], np.int64) or isinstance(dataset.iloc[1][column], np.float64):
|
||||
dataset[column] = (dataset[column] - dataset[column].min()) / (dataset[column].max() - dataset[column].min())
|
||||
return dataset
|
||||
|
||||
|
||||
cars = pd.read_csv(dataset_path)
|
||||
df = pd.DataFrame(cars)
|
||||
df = normalize_dataset(df)
|
||||
divide_dataset(df, dataset_path)
|
||||
|
Loading…
Reference in New Issue
Block a user