parametrized training
All checks were successful
444507-training/pipeline/head This commit looks good
All checks were successful
444507-training/pipeline/head This commit looks good
This commit is contained in:
parent
f6f1cabf10
commit
c823e0e4fb
@ -1,3 +1,5 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -8,7 +10,7 @@ from sklearn.metrics import accuracy_score
|
||||
import torch.nn.functional as F
|
||||
import pandas as pd
|
||||
from sklearn import preprocessing
|
||||
# import matplotlib.pyplot as plt
|
||||
import sys
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
@ -83,8 +85,17 @@ features_train, features_test, labels_train, labels_test = train_test_split(feat
|
||||
model = Model(features_train.shape[1])
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
# number of epochs is parametrized
|
||||
try:
|
||||
epochs = int(sys.argv[1])
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("Setting default epochs value to 1000.")
|
||||
epochs = 1000
|
||||
|
||||
print(f"Number of epochs: {epochs}")
|
||||
|
||||
print("Starting model training...")
|
||||
x_train, y_train = Variable(torch.from_numpy(features_train)).float(), Variable(torch.from_numpy(labels_train)).long()
|
||||
for epoch in range(1, epochs + 1):
|
||||
|
Loading…
Reference in New Issue
Block a user