#!/usr/bin/python import torch from torch import nn import pandas as pd from sklearn import preprocessing import numpy as np from torch.autograd import Variable from sklearn.metrics import accuracy_score, f1_score from csv import DictWriter import torch.nn.functional as F import sys import os class Model(nn.Module): def __init__(self, input_dim): super(Model, self).__init__() self.layer1 = nn.Linear(input_dim, 100) self.layer2 = nn.Linear(100, 60) self.layer3 = nn.Linear(60, 5) def forward(self, x): x = F.relu(self.layer1(x)) x = F.relu(self.layer2(x)) x = F.softmax(self.layer3(x)) # To check with the loss function return x def prepare_labels_features(dataset): """ Label make column""" le = preprocessing.LabelEncoder() mark_column = np.array(dataset[:]['0']) le.fit(mark_column) print(list(le.classes_)) lab = le.transform(mark_column) feat = dataset.drop(['0'], axis=1).to_numpy() mm_scaler = preprocessing.MinMaxScaler() feat = mm_scaler.fit_transform(feat) return lab, feat def print_metrics(test_labels, predictions): # take column with max predicted score f1 = f1_score(labels_test, np.argmax(predictions, axis=1), average='weighted') accuracy = accuracy_score(test_labels, np.argmax(predictions, axis=1)) print(f"The F1_score metric is: {f1}") print(f"The accuracy metric is: {accuracy}") try: build_number = sys.argv[1] print(f"Build number: {build_number}") field_names = ['BUILD_NUMBER', 'F1', 'ACCURACY'] dict = {'BUILD_NUMBER': build_number, 'F1': f1, 'ACCURACY': accuracy } filename = "./metrics.csv" file_exists = os.path.isfile(filename) with open(filename, 'a') as metrics_file: dictwriter_object = DictWriter(metrics_file, fieldnames=field_names) if not file_exists: dictwriter_object.writeheader() dictwriter_object.writerow(dict) metrics_file.close() except Exception as e: print(e) model = torch.load("CarPrices_pytorch_model.pkl") cars_dev = pd.read_csv('./Car_Prices_Poland_Kaggle_dev.csv', usecols=[1, 4, 5, 6, 10], sep=',', names=[str(i) for i in range(5)]) cars_dev = cars_dev.loc[(cars_dev['0'] == 'audi') | (cars_dev['0'] == 'bmw') | (cars_dev['0'] == 'ford') | (cars_dev['0'] == 'opel') | (cars_dev['0'] == 'volkswagen')] labels_test, features_test = prepare_labels_features(cars_dev) x_test = Variable(torch.from_numpy(features_test)).float() pred = model(x_test) pred = pred.detach().numpy() print_metrics(labels_test, pred)