import subprocess import sys import pandas as pd import os import numpy as np def unzip_package(): """Unzip dataset""" print('Unzipping dataset...') os.system('unzip -o ./car-prices-poland.zip') print('Dataset unzipped') print('Removing .zip file...') os.system('rm ./car-prices-poland.zip') print('Zip file removed') def download_dataset(): """Download kaggle dataset.""" print('Downloading dataset...') os.system('kaggle datasets download -d aleksandrglotov/car-prices-poland') print('Dir after downloading') os.system('ls -la') print('Dataset downloaded') def divide_dataset(dataset): """Split dataset to dev, train, test datasets. """ print('Dividing dataset...') os.system('tail -n +2 Car_Prices_Poland_Kaggle.csv | shuf > ./Car_Prices_Poland_Kaggle_shuf.csv') len1 = len(dataset) // 6 len2 = (len1 * 2) + 1 os.system(f'head -n {len1} Car_Prices_Poland_Kaggle_shuf.csv > Car_Prices_Poland_Kaggle_dev.csv') os.system(f'head -n {len1} Car_Prices_Poland_Kaggle_shuf.csv | tail -n {len1} > Car_Prices_Poland_Kaggle_test.csv') os.system(f'tail -n +{len2} Car_Prices_Poland_Kaggle_shuf.csv > Car_Prices_Poland_Kaggle_train.csv') os.system('rm ./Car_Prices_Poland_Kaggle_shuf.csv') print("Len match: " + str(sum([len1 * 2, len2]) == len(dataset))) os.system('cat Car_Prices_Poland_Kaggle_train.csv | wc -l') os.system('cat Car_Prices_Poland_Kaggle_dev.csv | wc -l') os.system('cat Car_Prices_Poland_Kaggle_test.csv | wc -l') print('Dataset devided') def normalize_dataset(dataset): """Drop unnecessary columns and set numeric values to [0,1] range""" print(f'--------------- Initial dataset length ---------------') print(len(dataset)) # drop columns dataset.drop(columns=["Unnamed: 0", "generation_name"], inplace=True) dataset = dataset.dropna() # normalize numbers to [0, 1] for column in dataset.columns: if isinstance(dataset.iloc[1][column], np.int64) or isinstance(dataset.iloc[1][column], np.float64): dataset[column] = (dataset[column] - dataset[column].min()) / (dataset[column].max() - dataset[column].min()) return dataset download_dataset() unzip_package() cars = pd.read_csv('./Car_Prices_Poland_Kaggle.csv') df = pd.DataFrame(cars) df = normalize_dataset(df) divide_dataset(df)