pipeline { agent { docker { image 's444507_create_dataset_image:latest' args '-v /mlruns:/mlruns' } } parameters { string(name: 'epoch', defaultValue: '100', description: 'Number of epochs to train model.') } stages { stage('Get artifacts') { steps { copyArtifacts fingerprintArtifacts: true, projectName: 's444507-create-dataset', selector: lastSuccessful() } } stage('Run mlflow script and save artifacts') { steps { sh "python3 lab08_deepLearining_mlflow.py $epoch" archiveArtifacts artifacts: 'CarPrices_pytorch_model.pkl' archiveArtifacts artifacts: 'mlruns/**' archiveArtifacts artifacts: 'my_model/**' sh 'rm -r mlruns' sh 'rm -r my_model' build job: 's444507-evaluation/master/' } } } post { always { emailext body: "${currentBuild.currentResult}", subject: 's444507-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' } } }