import subprocess import sys import pandas as pd import os import numpy as np def install_dependencies(): """Install kaggle and pandas.""" subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'pip']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'kaggle']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'pandas']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'seaborn']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'scikit-learn']) def unzip_package(): """Unzip dataset""" os.system('unzip -o car-prices-poland.zip') def download_dataset(): """Download kaggle dataset.""" os.system('kaggle datasets download -d aleksandrglotov/car-prices-poland') def divide_dataset(dataset): """Split dataset to dev, train, test datasets. """ os.system('tail -n +2 Car_Prices_Poland_Kaggle.csv | shuf > ./Car_Prices_Poland_Kaggle_shuf.csv') len1 = len(dataset) // 6 len2 = (len1 * 2) +1 os.system(f'head -n {len1} Car_Prices_Poland_Kaggle_shuf.csv f > Car_Prices_Poland_Kaggle_dev.csv') os.system(f'head -n {len1} Car_Prices_Poland_Kaggle_shuf.csv| tail -n {len1} > Car_Prices_Poland_Kaggle_test.csv') os.system(f'tail -n +{len2} Car_Prices_Poland_Kaggle_shuf.csv > Car_Prices_Poland_Kaggle_train.csv') os.system('rm ./Car_Prices_Poland_Kaggle_shuf.csv') print("Len match: " + str(sum([len1 * 2, len2]) == len(dataset))) os.system('cat Car_Prices_Poland_Kaggle_train.csv | wc -l') os.system('cat Car_Prices_Poland_Kaggle_dev.csv | wc -l') os.system('cat Car_Prices_Poland_Kaggle_test.csv | wc -l') def get_statistics(dataset): """Mean, min, max, median etc.""" print(f'--------------- Dataset length ---------------') print(len(dataset)) print(f'---------------Describe dataset---------------') pd.set_option('display.max_columns', None) print(dataset.describe(include='all')) def normalize_dataset(dataset): """Drop unnecessary columns and set numeric values to [0,1] range""" # drop columns dataset.drop(columns=["Unnamed: 0", "generation_name"], inplace=True) dataset = dataset.dropna() # normalize numbers to [0, 1] for column in dataset.columns: if isinstance(dataset.iloc[1][column], np.int64) or isinstance(dataset.iloc[1][column], np.float64): dataset[column] = (dataset[column] - dataset[column].min()) / ( dataset[column].max() - dataset[column].min()) return dataset # install_dependencies() download_dataset() unzip_package() cars = pd.read_csv('./Car_Prices_Poland_Kaggle.csv') df = pd.DataFrame(cars) df = normalize_dataset(df) divide_dataset(df) get_statistics(df)