AI2020_Project/checkingTrash.py

118 lines
3.5 KiB
Python
Raw Normal View History

2020-05-10 18:27:46 +02:00
import os
import numpy as np
import random
import shutil
from keras.models import Sequential
from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import random
#dataset from https://www.kaggle.com/asdasdasasdas/garbage-classification
'''#sepperating the file into training and testing data, creation of folders by hand removal of 75 images from papers for a more even distribution
def sepperate(type):
for i in type:
folder = "Garbage classification\\Garbage classification\\" + i
destination = "Garbage classification\\testset\\" + i
howmany = len(os.listdir(folder))
for j in range(int(howmany*0.2)):
move1 = random.choice(os.listdir(folder))
source = "Garbage classification\\Garbage classification\\" + i + "\\" + move1
d = shutil.move(source, destination, copy_function = shutil.copytree)
types = ["cardboard", "glass", "metal", "paper", "plastic"]
sepperate(types)
os.rename("Garbage classification\\Garbage classification", "Garbage classification\\trainset")
'''
classifier = Sequential()
classifier.add(Conv2D(32, (3, 3), input_shape=(110, 110, 3), activation = "relu"))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Conv2D(64, (3, 3), activation = "relu"))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# this layer in ver 4
classifier.add(Conv2D(32, (3, 3), activation = "relu"))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# -----------------
classifier.add(Flatten())
classifier.add(Dense(activation = "relu", units = 64 ))
classifier.add(Dense(activation = "softmax", units = 5))
2020-05-11 11:26:17 +02:00
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
2020-05-10 18:27:46 +02:00
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.1,
zoom_range=0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
vertical_flip=True,
)
test_datagen = ImageDataGenerator(
rescale=1./255,
validation_split=0.1
)
train_generator = train_datagen.flow_from_directory(
"Garbage classification\\trainset",
target_size=(110, 110),
batch_size=16,
class_mode='categorical',
#seed=0
)
test_generator = test_datagen.flow_from_directory(
"Garbage classification\\testset",
target_size=(110, 110),
batch_size=16,
class_mode='categorical',
)
#Teaching the classifier
'''classifier.fit_generator( train_generator, steps_per_epoch = 165, epochs = 32, validation_data = test_generator )
2020-05-11 11:26:17 +02:00
classifier.save_weights('model_ver_6.h5')'''
2020-05-10 18:27:46 +02:00
labels = (train_generator.class_indices)
labels = dict((value,key) for key,value in labels.items())
2020-05-11 11:26:17 +02:00
classifier.load_weights("model_ver_6.h5")
2020-05-10 18:27:46 +02:00
def getTrashPhoto(x, type):
for i in range(x):
kind = random.choice(type)
path = "Garbage classification\\testset\\" + kind
file = random.choice(os.listdir(path))
path = "Garbage classification\\testset\\" + kind + "\\" + file
var = image.load_img(path, target_size = (110,110))
ti = image.img_to_array(var)
ti=np.array(ti)/255.0
ti = np.expand_dims(ti, axis = 0)
prediction = classifier.predict(ti)
plt.subplot(1, 3, i+1)
plt.imshow(var)
plt.title("AI thinks:%s \nReality:\n %s" % (labels[np.argmax(prediction)], file))
plt.show()
types = ["cardboard", "glass", "metal", "paper", "plastic"]
type = ["metal"]
getTrashPhoto(3, types)
plt.show()