touch ups
This commit is contained in:
parent
1aeb9bf1fa
commit
e8bc0b6722
@ -6,6 +6,9 @@ import shutil
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense
|
||||
from keras.preprocessing import image
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
import matplotlib.pyplot as plt
|
||||
import random
|
||||
|
||||
#dataset from https://www.kaggle.com/asdasdasasdas/garbage-classification
|
||||
|
||||
@ -42,7 +45,7 @@ classifier.add(Dense(activation = "softmax", units = 5))
|
||||
classifier.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"])
|
||||
|
||||
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
|
||||
train_datagen = ImageDataGenerator(
|
||||
rescale=1./255,
|
||||
@ -76,16 +79,16 @@ test_generator = test_datagen.flow_from_directory(
|
||||
|
||||
|
||||
#Teaching the classifier
|
||||
'''classifier.fit_generator( train_generator, steps_per_epoch = 150, epochs = 25, validation_data = test_generator )
|
||||
classifier.save_weights('model_ver_4.h5')'''
|
||||
'''classifier.fit_generator( train_generator, steps_per_epoch = 165, epochs = 32, validation_data = test_generator )
|
||||
classifier.save_weights('model_ver_5.h5')'''
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
labels = (train_generator.class_indices)
|
||||
labels = dict((value,key) for key,value in labels.items())
|
||||
|
||||
|
||||
classifier.load_weights("model_ver_4.h5")
|
||||
import random
|
||||
classifier.load_weights("model_ver_5.h5")
|
||||
|
||||
|
||||
|
||||
def getTrashPhoto(x, type):
|
||||
@ -94,13 +97,13 @@ def getTrashPhoto(x, type):
|
||||
path = "Garbage classification\\testset\\" + kind
|
||||
file = random.choice(os.listdir(path))
|
||||
path = "Garbage classification\\testset\\" + kind + "\\" + file
|
||||
gz = image.load_img(path, target_size = (110,110))
|
||||
ti = image.img_to_array(gz)
|
||||
var = image.load_img(path, target_size = (110,110))
|
||||
ti = image.img_to_array(var)
|
||||
ti=np.array(ti)/255.0
|
||||
ti = np.expand_dims(ti, axis = 0)
|
||||
prediction = classifier.predict(ti)
|
||||
plt.subplot(1, 3, i+1)
|
||||
plt.imshow(gz)
|
||||
plt.imshow(var)
|
||||
plt.title("AI thinks:%s \nReality:\n %s" % (labels[np.argmax(prediction)], file))
|
||||
plt.show()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user