mlflow attempt task 2
This commit is contained in:
parent
0879e7ed2a
commit
b79af25c61
@ -1,6 +1,7 @@
|
||||
pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
args '-v /mlruns:/mlruns'
|
||||
}
|
||||
|
||||
parameters {
|
||||
@ -30,7 +31,6 @@ pipeline {
|
||||
"KAGGLE_KEY=${params.KAGGLE_KEY}"]) {
|
||||
sh 'python3 ./nn_train_mlflow.py'
|
||||
archiveArtifacts artifacts: 'mlruns/**'
|
||||
sh 'rm -r mlruns'
|
||||
sh 'rm -r my_model_mlflow'
|
||||
}
|
||||
}
|
||||
|
@ -9,8 +9,11 @@ from keras.utils import np_utils
|
||||
from tensorflow import keras
|
||||
import mlflow
|
||||
import sys
|
||||
from urllib.parse import urlparse
|
||||
|
||||
|
||||
mlflow.set_experiment("s444517")
|
||||
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
||||
|
||||
# reading data
|
||||
def read_data():
|
||||
@ -59,7 +62,7 @@ with mlflow.start_run():
|
||||
second_activation_funct = int(sys.argv[3]) if len(sys.argv) > 3 else "softmax"
|
||||
|
||||
x_train_set, dummy_y, x_validate_set, dummy_yv, x_test_set, y_test_set, y_class_names = data_prep()
|
||||
|
||||
|
||||
number_of_classes = 33
|
||||
number_of_features = 5
|
||||
model = Sequential()
|
||||
@ -79,10 +82,27 @@ with mlflow.start_run():
|
||||
y_true.append(sorted(y_class_names)[np.argmax(single_pred)])
|
||||
y_pred.append(y_test_set[numerator])
|
||||
|
||||
|
||||
signature = mlflow.models.signature.infer_signature(x_train_set, model.predict(x_train_set))
|
||||
|
||||
input_example = {
|
||||
"Rating": 4.100000,
|
||||
"Reviews": 0.000001,
|
||||
"Installs": 0.000005,
|
||||
"Price": 0.000000,
|
||||
"Genres_numeric_value": 57.000000
|
||||
|
||||
}
|
||||
|
||||
mlflow.log_param("epoch", epoch)
|
||||
mlflow.log_param("1st_activation_funct", first_activation_funct)
|
||||
mlflow.log_param("2nd_activation_funct", second_activation_funct)
|
||||
#mlflow.keras.log_model(model, 'my_model')
|
||||
mlflow.keras.save_model(model, "my_model_mlflow")
|
||||
mlflow.log_metric("accuracy", accuracy_score(y_true, y_pred))
|
||||
|
||||
|
||||
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
||||
|
||||
if tracking_url_type_store != "file":
|
||||
mlflow.sklearn.log_model(model, "my_model_mlflow", registered_model_name="s444517", signature=signature, input_example=input_example)
|
||||
else:
|
||||
mlflow.sklearn.log_model(model, "my_model_mlflow", signature=signature, input_example=input_example)
|
||||
mlflow.keras.save_model(model, "my_model_mlflow", signature=signature, input_example=input_example)
|
Loading…
Reference in New Issue
Block a user